位置:首页 > 题库频道 > 学历类 > 升学考试 > 高中(高考) > 数学(理科) > 圆锥曲线与方程练习题79

手机扫码关注微信
随时随地刷题

圆锥曲线与方程练习题79

推荐等级:
  • 卷面总分:100分
  • 试卷类型:真题试卷
  • 测试费用:¥5.00
  • 试卷答案:有
  • 练习次数:0
  • 作答时间:0分钟

试卷介绍

圆锥曲线与方程练习题79

试卷预览

  • 101椭圆 x2a2+ y2b2=1(a>b>0)的右焦点F,直线x= a2c与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是(  )

    A.(0, 22]

    B.(0, 12]

    C.[ 2-1,1)

    D.[ 12,1)

    开始考试练习点击查看答案
  • 102已知椭圆焦点在x轴,中心在原点,过左焦点F1作垂直于x轴的弦AB,使得△ABF2为正三角形,则椭圆的离心率为(  )

    A.12

    B.33

    C.23

    D.5-12

    开始考试练习点击查看答案
  • 103已知A,B为椭圆 x24+ y23=1的左右两个顶点,F为椭圆的右焦点,P为椭圆上异于

    A.B点的任意一点,直线AP、BP分别交椭圆的右准线于M、N点,则△MFN面积的最小值是( )A.8

    B.9

    C.11

    D.12

    开始考试练习点击查看答案
  • 104设椭圆 x2a2+ y2b2=1(a>b>0)与x轴交于A,B两点.两焦点将线段AB三等分,焦距为2c,椭圆上一点P到左焦点距离为3c,则|PA|的长为(  )

    A.5c

    B.10c

    C.17c

    D.17c或10c

    开始考试练习点击查看答案
  • 105方程x2-2 3x+2=0的两个根可分别作为(  )

    A.椭圆和双曲线的离心率

    B.椭圆和抛物线的离心率

    C.两椭圆的离心率

    D.两双曲线的离心率

    开始考试练习点击查看答案
  • 106已知F1、F2分别是椭圆 x2a2+ y2b2=1(a>b>0)的左、右焦点,在直线x=-a上有一点P,使|PF1|=|F1F2|,且∠PF1F2=120o,则椭圆的离心率为(  )

    A.12

    B.13

    C.23

    D.2

    开始考试练习点击查看答案
  • 107椭圆 x216+ y225=1的焦点为F1,F2,P为椭圆上一点,若|PF1|=2,则|PF2|=(  )

    A.2

    B.4

    C.6

    D.8

    开始考试练习点击查看答案
  • 108已知椭圆C1: x2m+2+ y2n=1与双曲线C2: x2m- y2n=1共焦点,则椭圆C1的离心率e的取值范围为(  )

    A.( 22,1)

    B.(0, 22)

    C.(0,1)

    D.(0, 12)

    开始考试练习点击查看答案
  • 109已知椭圆 x2n+y2=1(n>2)的两焦点为F1,F2,P在椭圆上,且满足|PF1|-|PF2|=2 n-2,则△PF1F2的面积是(  )

    A.1

    B.12

    C.2

    D.4

    开始考试练习点击查看答案
  • 110若椭圆 x24+ y2m2=1与双曲线 x2m2- y22=1有相同的焦点,则实数m为(  )

    A.1

    B.-1

    C.±1

    D.不确定

    开始考试练习点击查看答案
 11/12   首页 上一页 9 10 11 12 下一页 尾页
返回顶部