位置:首页 > 题库频道 > 学历类 > 升学考试 > 高中(高考) > 数学(理科) > 推理与证明练习题21

若三条直线两两平行,且不共面,则它们可以确定的平面数为 (  )

发布时间:2021-08-20

A.1

B.2

C.3

D.4

试卷相关题目

  • 1对大于或等于2的自然数的正整数幂运算有如下分解方式:(  )  2 2=1+3    3 2=1+3+5        4 2=1+3+5+7 2 3=3+5    3 3=7+9+11       4 3=13+15+17+19 根据上述分解规律,若m 2=1+3+5+…+11,n 3的分解中最小的正整数是21,则m+n= (  )

    A.10

    B.11

    C.12

    D.13

    开始考试点击查看答案
  • 2按照图1--图3的规律,第10个图中圆点的个数为( )个.

    A.40

    B.36

    C.44

    D.52

    开始考试点击查看答案
  • 3平面上有n条直线,它们任何两条不平行,任何三条不共点,设k(k<n)条这样的直线把平面分成f(k)个区域,则f(k+1)-f(k)等于 (  )

    A.k-1

    B.k

    C.k+1

    D.k+2

    开始考试点击查看答案
  • 4当x∈R +时可得到不等式 ≥2,x+ = + + ≥3,由此可以推广为x+ ≥n+1,取值p等于 (  )

    A.nn

    B.n2

    C.n

    D.n+1

    开始考试点击查看答案
  • 5如图所示,某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛.顶层一个,以下各层堆成正六边形,逐层每边增加一个花盆,若这垛花盆底层最长的一排共有 13个花盆,则底层的花盆的个数是 (  )

    A.91

    B.127

    C.169

    D.255

    开始考试点击查看答案
  • 6把正整数按一定的规则排成了如图所示的三角形数表.设a ij(i,j∈N *)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a 42=8,a 54=15.若a ij=2011,则i与j的和为 (  )

    A.106

    B.107

    C.108

    D.109

    开始考试点击查看答案
  • 7将n 2个正整数1,2,3,…,n 2填入n×n方格中,使其每行、每列、每条对角线上的数的和相等,这个正方形叫做n阶幻方.记f(n)为n阶幻方对角线的和,如右图就是一个3阶幻方,可知f(3)=15,,则f(5)= (  )

    A.63

    B.64

    C.65

    D.66

    开始考试点击查看答案
  • 8下图中的三角形称为希尔宾斯基三角形,在下图四个三角形中,着色三角形的个数依次构成数列的前四项,依此着色方案继续对三角形着色,则着色三角形的个数的通项公式为(  )  

    A.3n-1

    B.3n

    C.2n-1

    D.2n

    开始考试点击查看答案
  • 9根据给出的数塔猜测1 234 567×9+8= (  ) 1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111.

    A.11111110

    B.11111111

    C.11111112

    D.11111113

    开始考试点击查看答案
  • 10观察如图中各正方形图案,每条边上有n(n≥2)个圆点,第n个图案中圆点的总数是S n.按此规律推断出S n与n的关系式为 (  )

    A.Sn=2n

    B.Sn=4n

    C.Sn=2n

    D.Sn=4n-4

    开始考试点击查看答案
返回顶部