位置:首页 > 题库频道 > 学历类 > 升学考试 > 高中(高考) > 数学(理科) > 圆锥曲线与方程练习题79

椭圆x2+4y2-4=0上的一点P到椭圆一个焦点的距离为1,则P到该椭圆另一焦点的距离为(  )

发布时间:2021-09-14

A.2

B.3

C.5

D.7

试卷相关题目

  • 1F1、F2是椭圆 x2+2y2=2的两个焦点,过F2作倾斜角为45°的弦AB,则△ABF1的面积是(  )

    A.2 33

    B.4 23

    C.43

    D.34

    开始考试点击查看答案
  • 2已知椭圆的方程为2x2+3y2=m(m>0),则此椭圆的离心率为(  )

    A.13

    B.33

    C.22

    D.12

    开始考试点击查看答案
  • 3P为椭圆 x2a2+ y2b2=1(a>b>0)上一点,F1、F2是椭圆的左、右焦点,若使△F1PF2为直角三角形的点P共有8个,则椭圆离心率的取值范围是(  )

    A.( 22,1)

    B.( 32,1)

    C.(0, 22)

    D.[ 22,1)

    开始考试点击查看答案
  • 4若椭圆 x2a2+ y2b2=1(a>b>0)的离心率为  2 2,双曲线 x2b2- y2a2=1的离心率为(  )

    A.. 62

    B.. 72

    C.. 2

    D.3

    开始考试点击查看答案
  • 5椭圆 x29+ y225=1的长轴长是(  )

    A.5

    B.6

    C.10

    D.50

    开始考试点击查看答案
  • 6定义:离心率e=  5-12的椭圆为“黄金椭圆”,对于椭圆E: x2a2+ y2b2=1(a>b>0),c为椭圆的半焦距,如果a,b,c不成等比数列,则椭圆E(  )

    A.一定是“黄金椭圆”

    B.一定不是“黄金椭圆”

    C.可能是“黄金椭圆”

    D.可能不是“黄金椭圆”

    开始考试点击查看答案
  • 7已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围(  )

    A.(0, 2 33)

    B.(0, 33)

    C.( 2 33,1)

    D.( 33,1)

    开始考试点击查看答案
  • 8椭圆 x216+ y24=1上有两点P、Q,O为原点,若OP、OQ斜率之积为- 14,则|OP|2+|OQ|2 为(  )

    A.4

    B.20

    C.64

    D.不确定

    开始考试点击查看答案
  • 9椭圆 x2a2+ y2b2=1(a>b>0)的右焦点F,直线x= a2c与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是(  )

    A.(0, 22]

    B.(0, 12]

    C.[ 2-1,1)

    D.[ 12,1)

    开始考试点击查看答案
  • 10已知椭圆焦点在x轴,中心在原点,过左焦点F1作垂直于x轴的弦AB,使得△ABF2为正三角形,则椭圆的离心率为(  )

    A.12

    B.33

    C.23

    D.5-12

    开始考试点击查看答案
返回顶部