位置:首页 > 题库频道 > 学历类 > 升学考试 > 高中(高考) > 数学(文科) > 高中数学代数与函数一其他练习题811

函数y=x3+x的递增区间是 

发布时间:2021-07-15

A.(0,+∞)  

B.(﹣∞,1)  

C.(﹣∞,+∞)  

D.(1,+∞)

试卷相关题目

  • 1已知R上的不间断函数g(x)满足:①当x>0时,g′(x)>0恒成立;②对任意的x∈R都有g(x)=g(-x)。 又函数f(x)满足:对任意的x∈R,都有f(http://picflow.koolearn.com/upload/papers/g02/20120503/20120503102327999883.gif+x)=-f(x)成立,当x∈[0,http://picflow.koolearn.com/upload/papers/g02/20120503/20120503102328046883.gif]时,f(x)=x3-3x。若关于x的不等式g[f(x)]≤g(a2-a+2)对x∈[-3,3]恒成立,则a的取值范围

    A.a≤0或a≥1

    B.0≤a≤1

    C.-1≤a≤1

    D.a∈R

    开始考试点击查看答案
  • 2设函数f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有http://picflow.koolearn.com/upload/papers/g02/20120716/201207161531229871270.png恒成立,则不等式 x2f(x)>0的解集为

    A.(-2,0)∪(2,+∞)

    B.(-2,0)∪(0,2)

    C.(-∞,-2)∪(2,+∞)

    D.(-∞,-2)∪(0,2)

    开始考试点击查看答案
  • 3函数http://picflow.koolearn.com/upload/papers/g02/20120707/201207071325500472423.png在(1,2)上单调递减,则a的取值范围是

    A.(-∞,1]

    B.http://picflow.koolearn.com/upload/papers/g02/20120707/201207071325500721277.png

    C.http://picflow.koolearn.com/upload/papers/g02/20120707/201207071325501081366.png

    D.[1,+∞)

    开始考试点击查看答案
  • 4设f(x)=x﹣lnx,则此函数在区间(0,1)内为

    A.单调递减

    B.有增有减

    C.单调递增

    D.不确定

    开始考试点击查看答案
  • 5http://picflow.koolearn.com/upload/papers/g02/20120826/201208261015016663903.png上是减函数,则b的取值范围是

    A.[﹣1,+∞)

    B.(﹣1,+∞)

    C.(﹣∞,﹣1]

    D.(﹣∞,﹣1)

    开始考试点击查看答案
  • 6函数f(x)的定义域为(a,b),导函数f"(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极值点(  )

    A.1个

    B.2个

    C.3个

    D.4个魔方格

    开始考试点击查看答案
  • 7函数http://picflow.koolearn.com/upload/papers/g02/20121012/20121012093408216499.png在定义域内http://picflow.koolearn.com/upload/papers/g02/20121012/20121012093408372721.png的图象如图所示,记http://picflow.koolearn.com/upload/papers/g02/20121012/20121012093408532548.png的导函数为http://picflow.koolearn.com/upload/papers/g02/20121012/20121012093408669524.png,则不等式http://picflow.koolearn.com/upload/papers/g02/20121012/20121012093408802624.png的解集为 http://picflow.koolearn.com/upload/papers/g02/20121009/2012100910142885812790.png

    A.http://picflow.koolearn.com/upload/papers/g02/20121012/20121012093408930948.png

    B.http://picflow.koolearn.com/upload/papers/g02/20121012/20121012093409065887.png

    C.http://picflow.koolearn.com/upload/papers/g02/20121012/201210120934092191008.png

    D.http://picflow.koolearn.com/upload/papers/g02/20121012/201210120934093421347.png

    开始考试点击查看答案
  • 8函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极大值点(  )

    A.1个

    B.2个

    C.3个

    D.4个魔方格

    开始考试点击查看答案
  • 9我们常用以下方法求形如y=f(x)g(x)的函数的导数:先两边同取自然对数得:lny=g(x)lnf(x), 再两边同时求导得到:http://picflow.koolearn.com/upload/papers/g02/20121002/201210021734083036207.png于是得到: y ′= f(x)g(x)http://picflow.koolearn.com/upload/papers/g02/20121002/201210021734088023562.png运用此方法求得函数http://picflow.koolearn.com/upload/papers/g02/20121002/201210021734092811032.png的一个单调递增区间是

    A.(e,4)

    B.(3,6)

    C.(0,e)

    D.(2,3)

    开始考试点击查看答案
  • 10函数y=f(x)在定义域(﹣http://picflow.koolearn.com/upload/papers/g02/20120922/20120922103925252603.png,3)内可导,其图象如图所示.记y=f(x)的导函数为y=f"(x),则不等式f"(x)≤0的解集为http://picflow.koolearn.com/upload/papers/g02/20120922/2012092210392606312849.png

    A.[﹣http://picflow.koolearn.com/upload/papers/g02/20120922/20120922103926544554.png,1]∪[2,3)

    B.[﹣1,http://picflow.koolearn.com/upload/papers/g02/20120922/20120922103927012559.png]∪[http://picflow.koolearn.com/upload/papers/g02/20120922/20120922103927429616.pnghttp://picflow.koolearn.com/upload/papers/g02/20120922/20120922103927845567.png]

    C.[﹣http://picflow.koolearn.com/upload/papers/g02/20120922/20120922103928269564.pnghttp://picflow.koolearn.com/upload/papers/g02/20120922/20120922103928686533.png]∪[1,2)

    D.(﹣http://picflow.koolearn.com/upload/papers/g02/20120922/20120922103929106564.png,﹣http://picflow.koolearn.com/upload/papers/g02/20120922/20120922103929522526.png]∪[http://picflow.koolearn.com/upload/papers/g02/20120922/20120922103929983533.pnghttp://picflow.koolearn.com/upload/papers/g02/20120922/20120922103930404584.png]∪[http://picflow.koolearn.com/upload/papers/g02/20120922/20120922103930824584.png,3)

    开始考试点击查看答案
返回顶部