位置:首页 > 题库频道 > 学历类 > 升学考试 > 高中(高考) > 数学(文科) > 高中数学代数与函数一计数原理27

七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是(  )

发布时间:2021-09-17

A.1440

B.3600

C.4320

D.4800

试卷相关题目

  • 1如图,一环形花坛分成 四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为(   )

    A.96

    B.84

    C.60

    D.48

    开始考试点击查看答案
  • 2有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有

    A.1344种

    B.1248种

    C.1056种

    D.960种

    开始考试点击查看答案
  • 3,且 的展开式中只有第4项的二项式系数最大,那么展开式中的所有项的系数之和是(     )

    A.

    B.

    C.

    D.

    开始考试点击查看答案
  • 4现有6个人分乘两辆不同的出租车,已知每辆车最多能乘坐4个人,则不同的乘车方案种数为

    A.30

    B.50

    C.60

    D.70

    开始考试点击查看答案
  • 5现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可 的少,那么剩余钢管的根数为( )

    A.9

    B.10

    C.19

    D.29

    开始考试点击查看答案
  • 6高二某班6名同学站成一排照相,同学甲,乙不能相邻,并且甲在乙的右边,则不同排法总数共有(   )

    A.120

    B.240

    C.360

    D.480

    开始考试点击查看答案
  • 7高中三年级8个班协商组成年级篮球队,共需10名队员,每个班至少要出1名,不同的名额分配方案的种数是

    A.16

    B.24

    C.28

    D.36

    开始考试点击查看答案
  • 8现从甲、乙、丙等6名学生中安排4人参加4×100 接力赛跑。第一棒只能从甲、乙两人中安排1人,第四棒只能从甲、丙两人中安排1人,则不同的安排方案共有

    A.24种

    B.36种

    C.48种

    D.72种

    开始考试点击查看答案
  • 9有两排座位,前排11个座位,后排12个座位,现安排2人就坐,规定前排中间三个座位不能坐,并且这2人不左右相邻,那么不同排法的种数

    A.234

    B.346

    C.350

    D.363

    开始考试点击查看答案
  • 10用五种颜色去染四棱锥S—ABCD的五个不同的面,相邻两个面不能染同一种颜色,则不同的染色的方法有(  )

    A.120种

    B.420种

    C.320种

    D.720种

    开始考试点击查看答案
返回顶部