当前位置:首页 > 全部子站 > 军校考试 > 解放军/武警/公安/边防/消防 > 数学

数学:数列专题复习习题及答案:二、填空题

来源:长理培训发布时间:2020-04-09 13:46:40

8.(2013•新课标全国Ⅰ卷)若数列{an}的前n项和为Sn=23an+13,则数列{an}的通项公式是an=________.

  解析 当n=1时,a1=1;当n≥2时,an=Sn-Sn-1=23an-23an-1,所以anan-1=-2,∴{an}是以1为首项,-2为公比的等比数列,故an=(-2)n-1.

  答案 (-2)n-1

  9.(2013•北京卷)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=________;前n项和Sn=________.

  解析 由题意q=a3+a5a2+a4=2,又a2+a4=20,故a1q+a1q3=20,解得a1=2,所以Sn=2n+1-2.

  答案 2 2n+1-2

  10.(2014•新课标全国Ⅱ卷)数列{an}满足an+1=11-an,a8=2,则a1=________.

  解析 先求出数列的周期,再进一步求解首项,

  ∵an+1=11-an,

  ∴an+1=11-an=11-11-an-1=1-an-11-an-1-1

  =1-an-1-an-1=1-1an-1

  =1-111-an-2=1-(1-an-2)=an-2,

  ∴周期T=(n+1)-(n-2)=3.

  ∴a8=a3×2+2=a2=2.

  而a2=11-a1,∴a1=12.

  答案 12

  11.设数列{an}是公差不为0的等差数列,a1=1且a1,a3,a6成等比数列,则数列{an}的前n项和Sn=________.

  解析 设公差为d,由a1,a3,a6成等比数列,可得(1+2d)2=1×(1+5d),解得d=14,所以Sn=n+nn-12×14=18n2+78n.

  答案 18n2+78n

  12.(2014•天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和.若S1,S2,S4成等比数列,则a1的值为________.

  解析 根据等差数列的前n项和公式求出S1,S2,S4的表达式,然后利用等比数列的性质求解.

  等差数列{an}的前n项和为Sn=na1+nn-12d,

  所以S1,S2,S4分别为a1,2a1-1,4a1-6.

  因为S1,S2,S4成等比数列,

  所以(2a1-1)2=a1•(4a1-6),解方程得a1=-12.

  答案 -12

责编:郝悦浩

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部