位置:首页 > 题库频道 > 学历类 > 升学考试 > 高中(高考) > 数学(文科) > 高中数学代数与函数一其他练习题21

已知一个命题P(k),k=2n(n∈N),若n =1,2,…,1000时,P(k)成立,且当 http://picflow.koolearn.com/upload/papers/20140824/20140824010332829501.png时它也成立,下列判断中,正确的是(   )

发布时间:2021-07-12

A.P(k)对k=2013成立

B.P(k)对每一个自然数k成立

C.P(k)对每一个正偶数k成立

D.P(k)对某些偶数可能不成立

试卷相关题目

  • 1http://picflow.koolearn.com/upload/papers/20140824/20140824020515651451.png是定义在正整数集上的函数,且 http://picflow.koolearn.com/upload/papers/20140824/20140824020515651451.png满足:“当 http://picflow.koolearn.com/upload/papers/20140824/20140824020515682629.png成立时,总可推出 http://picflow.koolearn.com/upload/papers/20140824/20140824020515698700.png成立”,那么,下列命题总成立的是(  )

    A.若http://picflow.koolearn.com/upload/papers/20140824/20140824020515713566.png成立,则http://picflow.koolearn.com/upload/papers/20140824/20140824020515745602.png成立

    B.若http://picflow.koolearn.com/upload/papers/20140824/20140824020515760601.png成立,则当http://picflow.koolearn.com/upload/papers/20140824/20140824020515776373.png时,均有http://picflow.koolearn.com/upload/papers/20140824/20140824020515854620.png成立

    C.若http://picflow.koolearn.com/upload/papers/20140824/20140824020515869596.png成立,则http://picflow.koolearn.com/upload/papers/20140824/20140824020515885573.png成立

    D.若http://picflow.koolearn.com/upload/papers/20140824/20140824020515901599.png成立,则当http://picflow.koolearn.com/upload/papers/20140824/20140824020515916404.png时,均有http://picflow.koolearn.com/upload/papers/20140824/20140824020515854620.png成立

    开始考试点击查看答案
  • 2用数学归纳法证明: http://picflow.koolearn.com/upload/papers/20140823/20140823225346059595.pnghttp://picflow.koolearn.com/upload/papers/20140823/20140823225346106531.png)能被 http://picflow.koolearn.com/upload/papers/20140823/20140823225346122410.png整除.从假设 http://picflow.koolearn.com/upload/papers/20140823/20140823225346137409.png成立到 http://picflow.koolearn.com/upload/papers/20140823/20140823225346168468.png成立时,被整除式应为(    )

    A.http://picflow.koolearn.com/upload/papers/20140823/20140823225346184661.png

    B.http://picflow.koolearn.com/upload/papers/20140823/20140823225346402682.png

    C.http://picflow.koolearn.com/upload/papers/20140823/20140823225346418635.png

    D.http://picflow.koolearn.com/upload/papers/20140823/20140823225346449591.png

    开始考试点击查看答案
  • 3在用数学归纳法证明凸n边形内角和定理时,第一步应验证(  )

    A.n=1时成立

    B.n=2时成立

    C.n=3时成立

    D.n=4时成立

    开始考试点击查看答案
  • 4用数学归纳法证明 http://picflow.koolearn.com/upload/papers/20140824/20140824020232553959.pnghttp://picflow.koolearn.com/upload/papers/20140824/20140824020232568677.png),在验证当n=1时,等式左边应为

    A.1

    B.1+a

    C.1+a+a2

    D.1+a+a2+a3

    开始考试点击查看答案
  • 5用数学归纳法证明1+a+a 2+ +a n +1= http://picflow.koolearn.com/upload/papers/20140824/20140824011942869562.png (n∈N *,a≠1),在验证n=1时,左边所得的项为(  )

    A.1

    B.1+a+a2

    C.1+a

    D.1+a+a2+a3

    开始考试点击查看答案
  • 6观察式子: http://picflow.koolearn.com/upload/papers/20140824/20140824001446622566.pnghttp://picflow.koolearn.com/upload/papers/20140824/20140824001446638654.pnghttp://picflow.koolearn.com/upload/papers/20140824/20140824001446653724.pnghttp://picflow.koolearn.com/upload/papers/20140824/20140824001446669236.png则可归纳出式子( )

    A.http://picflow.koolearn.com/upload/papers/20140824/201408240014466851068.png

    B.http://picflow.koolearn.com/upload/papers/20140824/201408240014467161077.png

    C.http://picflow.koolearn.com/upload/papers/20140824/201408240014467311090.png

    D.http://picflow.koolearn.com/upload/papers/20140824/201408240014467311111.png

    开始考试点击查看答案
  • 7已知n是正偶数,用数学归纳法证明时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明(  )

    A.n=k+1时命题成立

    B.n=k+2时命题成立

    C.n=2k+2时命题成立

    D.n=2(k+2)时命题成立

    开始考试点击查看答案
  • 8下列代数式(其中k∈N *)能被9整除的是(  )

    A.6+6·7k

    B.2+7k-1

    C.2(2+7k+1)

    D.3(2+7k)

    开始考试点击查看答案
  • 9用数学归纳法证明不等式2 n>n 2时,第一步需要验证n 0=_____时,不等式成立(    )

    A.5

    B.2和4

    C.3

    D.1

    开始考试点击查看答案
  • 10用数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为(  )

    A.2k+1

    B.2(2k+1)

    C.http://picflow.koolearn.com/upload/papers/20140823/20140823214026820518.png

    D.http://picflow.koolearn.com/upload/papers/20140823/20140823214026836572.png

    开始考试点击查看答案
返回顶部