- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
这是一部内容广泛的微积分专著,是牛顿在数学方面的代表作.在前两部书的基础上,牛顿提出了更加完整的理论.
从书中可以看出,牛顿的流数概念已发展到成熟的阶段.他把随时间变化的量,即以时间为自变量的函数称为流量,以字母表的后几个字母v,x,y,z来表示;把流量的变化速度,即变化率称为流数,以表 保留,并且仍用o表示.
他在书中明确表述了他的流数法的理论依据,说:“流数法赖以建立的主要原理,乃是取自理论力学中的一个非常简单的原理,这就是:数学量,特别是外延量,都可以看成是由连续轨迹运动产生的;而且所有不管什么量,都可以认为是在同样方式下产生的.”又说:“本人是靠另一个同样清楚的原理来解决这个问题的,这就是假定一个量可以无限分割,或者可以(至少在理论上说)使之连续减小,直至……比任何一个指定的量都小.”牛顿在这里提出的“连续”思想及使一个量小到“比任何一个指定的量都小”的思想是极其深刻的,他正是在这种思想的主导下解决了如下两类基本问题.
第一类:已知流量的关系求它们的流数之比,即已知y=f(x)或
例如书中的问题1:如果流量x和y之间的关系是x3-ax2+axy-y3=0,求它们的流数之比.
程中的x和y,得
展开后利用x3-ax2+axy-y3=0这一事实再把余下的项除以o,得
至此牛顿说:“我们已假定o是无限微小,它可以代表流动量的瞬,所以与它相乘的诸项相对于其他诸项来说等于没有.因此我把它们丢掉,而剩下
从表面看,这种方法与《流数简论》中的方法一致.所不同的是,
数.《简论》中求流数之比的基本法则也被牛顿赋予一般的意义.
例如,假定y=xn,牛顿首先建立
然后用二项式定理展开右边,消去y=xn,用o除两边,略去仍含o的项,结果得
当然,在对具体函数微分时,不必采用无穷小而可直接代入公式.
第二类:已知一个含流数的方程,求流量,即积分.
(x),则
数简论》中,牛顿在具体积分中已经采用了这种方法,只是到这时才明确总结出公式.从《简论》及《流数法》两书来看,他推导此式的思路大致如下:
由(2),(3)得
由微积分基本定理,得
牛顿在书中还推出分部积分公式,即
∫uv′dx=uv-∫vu′dx.
其中u和v都是x的函数.若求∫uv′dx有困难而求∫vu′dx 比较容易时,就可利用分部积分公式求积分.
牛顿总结了他的积分研究成果,列成两个积分表,一个是“与直线图形有关的曲线一览表”,另一个是“与圆锥曲线有关的曲线一览表”.这两个表为积分工作提供了许多方便.
至此,牛顿已建立起比较完整的微分和积分算法,他当时统称为流数法.他充分认识到这种方法的意义,说流数法(即微积分)是一种“普遍方法”,它“不仅可以用来画出任何曲线的切线……而且还可以用来解决其他关于曲度、面积、曲线的长度、重心的各种深奥问题.”《流数法》一书便充分体现了微积分的用途,下面略举几例.
例1,在“问题3——极大值和极小值的确定”中,牛顿给出了通过解方程f′(x)=0来求f(x)极值的方法.他写道:“当一个量取极大值或极小值时,它的流数既不增加也不减少,因为如果增加,就说明它的流数还是较小的,并且即将变大;反之,如果减少,则情况恰好相反.所以求出它的流数,并且令这个流数等于0.”他用这种方法解出了九个问题.其中之一是求方程x3-ax2+axy-y3=0中x的最大值.他先求出x和y的流数之比,得
即 3y2=ax.
把上式代入原方程后,就很容易求得相应的x值和y值了.
例2,已知曲线方程为x3-ax2+axy y3=0,AB和BD分别为曲线上D点的横、纵坐标,求作过D点的切线(图11.15).牛顿先求得流数之间的关系
由此得出
因BD=y,所以
牛顿说:“给定D点后,便可得出DB和AB,即y和x,BT的长度也就给定,由此可确定切线TD.”
例3,在“问题12——曲线长度的确定”中,牛顿采用流数法计算弧长.设QR是给定曲线,RN⊥MN,牛顿分别记MN=s.NR=t,QR=v(图11.16),它们的流数分别为s,t,v,然后“想象直线NR向右移动到最接近的可能位置nr,由R向nr引垂线RS,则MN,NR和QR分别增加RS,Sr和Rr.”牛顿说:“因为RS,Sr和Rr相互之比是这些线段的流数之间的
若换成现在通用的坐标x,y和弧长s,则牛顿的结果为
只要对t积分,就可求出弧长s了.
综上所述,《流数法》不仅在基本思想上比《分析学》有了发展,而且提供了更加有效的计算方法.但牛顿的基本方法仍是弃去无穷小,因而同《分析学》一样出现逻辑困难.他尝试建立没有无穷小的微积分,于是有《曲线求积术》(下简称《求积术》)之作.
责编:刘卓
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>