- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
埃及数学的主要内容
根据埃及纸草书的记载,古埃及人对算术、代数、几何等数学知识已经有了初步认识,并能做简单地应用.现简要介绍如下:
一、算术
古埃及人所创建的数系与罗马数系有很多相似之处,具有简单而又纯朴的风格,并且使用了十进位制,但是不知道位值制.
古埃及人是用象形文字来表示数的,例如
根据史料记载,上述象形文字似乎只限于表示107以前数.由于是用象形文字表示数,进行相加运算是很麻烦的,必须要数“个位数”、“十位数”、“百位数”的个数.但在计算乘法时,埃及人采取了逐次扩大2倍(duplication)的方法,运算过程比较简便.
乘法:古埃及人采用反复扩大倍数的方法,然后将对应结果相加.例如兰德纸草书(希特版)第32页,记载着12×12的计算方法,是从右往左读的.右边用现代数字表示,这就是倍增法(duplatio).
由下表可知,计算的方法是把12依次扩大2倍,那么12×12为12的4倍加上12的8倍,恰是12的12倍,并把要加的数在右侧(现代阿拉伯数字在左侧)标记斜线,算得结果144.
在更早的时期,埃及人也曾采用“减半法”来计算乘法.首先是将一乘数扩大10倍,然后再计算10倍的一半.例如纸草书(卡芬版)第6页,计算16×16,是按如下方法计算的,即减半法(mediatio).
/1 16
/10 160
/5 80
合计 256
这种乘法的计算方法是古代人计算技能的基础,是非常古老的方法.希腊时期的学校曾讲授过埃及人的计算方法,到了中世纪,还讲授“倍增法”和“减半法”.
除法:埃及人很早就认识到除法是乘法的逆运算,并蕴含在实际计算之中.例如,计算1120÷80(见兰德纸草书第69页).
1 80
/10 800
2 160
/4 320
合计 1120
以上求解的基本思路是10倍的80加4倍的80,恰好是1120,即1120中含有14个80.
分数:古埃及人对分数的记法和计算都比现在复杂得多.例如,他
分叫做“第三部分”.例如,
这样,通过二个部分与第三部分;三个部分与第四部分的结合来表示出一个整体.现在的西欧,有时也用第三(third)、第四(fourth)、第五(fifth)等语言来表达三分之一、四分之一这类分数的含义.按此规律理解,五分之一可认为与四个部分结合成一个整体的第五部分.从语言的角度,五分之二(twofifths)就无法表达了.
随着分数范围的不断扩大,计算方法的不断改进,埃及人用“单位分数”(分子是1的分数)来表示分数:
对一般分数则拆成“单位分数”表示①.例如,(用现代符号表示)
责编:刘卓
下一篇:解放军文职招聘考试代数
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>