- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
第二节 骨骼肌的生物电现象
一、概述
(1)生物电--— 一切活组织的细胞都存在电活动,这种电活动称为生物电。
(2)动作电位---- 可兴奋组织在受到刺激发生兴奋时,出现的一种电变化。作为可兴奋组织的标志。
二、静息电位
(一)静息电位的概念
细胞处于安静状态,细胞膜内外所存在的电位差称为静息电位(resting potential)。这种电位差存在于细胞膜两侧,所以又称跨膜电位,或简称膜电位(membrane potential)。静息电位相对恒定,据测定哺乳类动物神经细胞的静息电位绝对值约为70~90mV。若以细胞膜外电位为零,细胞膜内电位则为-70~-90Mv。
(二)静息电位产生原理
静息电位产生原理可以用“离子学说”来解释。离子学说认为:①细胞内外各种离子的浓度分布是不均匀的;②细胞膜对各种离子通透具有选择性。由于神经细胞和骨骼肌细胞静息电位与动作电位的产生原理相似,下面就以神经细胞为例叙述静息电位与动作电位的产生原理。哺乳类动物神经细胞内的K+浓度高于细胞外28倍,而Na+、CL-细胞外浓度分别高于细胞内13和30倍。另外细胞内的负离子主要是大分子有机负离子,如蛋白质等(以A-表示)。因此,如果细胞膜允许离子自由通过的话,它们将以扩散的方式顺浓度梯度产生K+和A-的外流(由细胞内向细胞外流动)以及Na+和CL- 的内流(由细胞外向细胞内流动)。但是细胞膜对离子的通透是有选择的。当细胞处于静息状态时,细胞膜对K+的通透性大,而对Na+的通透性较小,仅为K+通透性的1/100~1/50。而对A-则几乎没有通透性,所以就形成在静息时K+向细胞外流动。离子的流动必然伴随着电荷的转移,结果使细胞内因丧失带正电荷的K+而电位下降,同时使细胞外因增加带正电荷的K+而电位上升,这就必然造成细胞外电位高而细胞内电位低的电位差。所以,K+的外流是静息电位形成的基础。随着K+外流,细胞膜两侧形成的外正内负的电场力会阻止细胞内K+的继续外流,当促使K+外流的由浓度差形成的向外扩散力与阻止K+外流的电场力相等时,K+的净移动量就会等于零。这时细胞内外的电位差值就稳定在一定水平上,这就是静息电位。由于静息电位主要是K+由细胞内向外流动达到平衡时的电位值,所以又把静息电位称为K+平衡电位。
哺乳动物神经轴突膜内外的离子浓度(mmol/L)
|
K+ |
Na+ |
CL- |
细胞膜内 |
140 |
10 |
4 |
细胞膜外 |
5 |
130 |
120 |
膜内外浓度比 |
28:1 |
1:13 |
1:30 |
离子流动方向 |
膜内流向膜外 |
膜外流向膜内 |
膜外流向膜内 |
三、动作电位
(一)动作电位的概念
可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化称为动作电位(action potential)。动作电位是一个连续的电位变化过程。另外,它在细胞的某一部位一旦产生,就会迅速向四周扩布。动作电位是在静息电位的基础上产生的电位变化。(二)动作电位的变化过程
动作电位示意图(细胞内记录)
以神经轴突为例,把用细胞内记录法所得到的动作电位变化过程简述如下。
ab:动作电位的上升支
bc:动作电位的下降支
abc::动作电位的锋电位
cd:动作电位的后电位
1、静息相
2、去极相
神经细胞感受刺激后,在静息电位基础上受刺激处的细胞膜会立刻爆发一次快速而连续的电位变化。首先静息电位的绝对值很快减小到零,进而膜电位发生反转,由原来的外正内负转变为外负内正,由原来-90mV反转到约+30mV,电位变化的幅度为120mV,形成动作电位曲线的上升支。上升支进行的时间很短,大约在0.5ms内完结。细胞膜的静息电位由-90 mV减小到0 mV的过程被称为去极化(depolarization phase),去极化是膜电位消失的过程;细胞膜电位由0 mV转变为外负内正的过程称为反极化。反极化的电位幅度称为超射(over shoot)。
3、复极相
动作电位的上升支和下降支持续时间都很短,历时不超过2.0ms。所记录下来的图形很尖锐,因此称为锋电位(spike potential)。锋电位之后还有一个缓慢的电位波动,这种时间较长波动较小的电位变化过程称为后电位(after potential)。它是膜电位恢复到静息电位前的微小波动。后电位完结后细胞膜电位才完全恢复到静息电位水平。
动作电位是在静息电位基础上爆发的一次电位快速上升又快速下降以及随后的缓慢波动过程。它包括锋电位和后电位两种电位变化,或者说包括去极化和复极化两个时相。其中锋电位特别是它的上升支是动作电位的主要成分。一般所说的动作电位就是指锋电位而言。
在动作电位过程中,神经细胞的兴奋性也发生相应的变化。兴奋性变化分为绝对不应期、相对不应期、超常期和低常期。从时间关系来说,锋电位相当于细胞的绝对不应期。后电位的前段相当于相对不应期和超常期。后电位的后段相当于低常期。
(三)动作电位的特点
①“全或无”(all or none)现象。任何刺激一旦引起膜去极化达到阈值,动作电位就会立刻产生,它一旦产生就达到最大值,动作电位的幅度也不会因刺激加强而增大。②不衰减性传导。动作电位一旦在细胞膜的某一部位产生,它就会向整个细胞膜传播,而且它的幅度不会因为传播距离增加而减弱。③脉冲式。由于不应期的存在使连续的多个动作电位不可能融合,两个动作电位之间总有一定间隔。
(四)动作电位的产生原理
动作电位的产生原理也可以用离子流学说来解释。由于Na+在细胞外的浓度比细胞内高得多,它有由细胞外向细胞内扩散的趋势。而离子进出细胞是由细胞膜上的离子通道来控制的。在安静时膜上Na+通道关闭。当细胞受到刺激时,膜上的Na+通道被激活而开放,Na+顺浓度梯度瞬间大量内流,细胞内正电荷增加,导致电位急剧上升,负电位从静息电位水平减小到消失进而出现膜内为正膜外为负的电位变化,形成锋电位的上升支,即去极化和反极化时相。当膜内正电位所形成的电场力增大到足以对抗Na+内流时,膜电位达到一个新的平衡点,即Na+平衡电位。与此同时,Na+通道逐渐失活而关闭,K+通道逐渐被激活而重新开放,导致Na+内流停止,产生K+ 快速外流,细胞内电位迅速下降,恢复到兴奋前的负电位状态,形成动作电位的下降支,亦即复极化时相(repolarization phase)。
(五)动作电位的传导动作电位的传导
动作电位一旦在细胞膜的某一点产生,就沿着细胞膜向各个方向传播,直到整个细胞膜都产生动作电位为止。这种在单一细胞上动作电位的传播叫做传导(conduction)。如果发生在神经纤维上,动作电位的传导是双向的。
在无髓神经纤维上动作电位是以局部电流的形式进行传导的。动作电位的传导实质上是局部电流流动的结果。
有髓神经纤维外面包裹着一层电阻很高的髓鞘,动作电位只能在没有髓鞘的朗飞结处产生局部电流。因此动作电位是越过每一段带髓鞘的神经纤维呈跳跃式传导的。因为,有髓神经纤维较粗大,电阻较小,而且,动作电位的传导是跳跃式的,所以动作电位在有髓神经纤维上的传导速度要比在无髓神经纤维上快的多。如人的粗大有髓神经纤维的传导速度超过每秒
A、B、C:动作电位在无髓神经纤维上的传导过程,在无髓神经纤维上动作电位以局部电流的方式进行传导。D:动作电位在有髓神经纤维上的传导过程,在有髓神经纤维上动作电位呈跳跃式传导。
(六)细胞间的兴奋传递细胞间的兴奋传递
细胞间的兴奋传递有两种情况。一种是神经细胞之间的兴奋传递;另一种是神经细胞与肌细胞之间的兴奋传递。这两种传递过程有相似之处,在此仅对神经细胞与肌细胞之间的兴奋传递进行叙述。
1、神经-肌肉接头的结构
神经-肌肉接头的结构又称为运动终板。运动神经的末梢发出许多细小分支,并且在终末部分膨大。此处的细胞膜较正常部位要厚些,被称为接头前膜(终板前膜),与之相对应的骨骼肌细胞膜称为接头后膜(终板后膜)。接头前膜与接头后膜之间的间隙称为接头间隙(终板间隙)。
2、神经—肌肉接头的兴奋传递
当动作电位沿神经纤维传到轴突末梢时,引起轴突末梢处的接头前膜上的钙离子通道开放,Ca2+ 从细胞外液进入轴突末梢,促使轴浆中含有乙酰胆碱的突触小泡向接头前膜移动。当突触小泡到达接头前膜后,突触小泡膜与接头前膜融合进而破裂,将乙酰胆碱释放到接头间隙。乙酰胆碱通过接头间隙到达接头后膜后和接头后膜上的特异性的乙酰胆碱受体结合,引起接头后膜上的Na+ 、K+ 通道开放,使Na+ 内流,K+ 外流,结果使接头后膜处的膜电位幅度减小,即去极化。这一电位变化称为终板电位(end-plate potential)。当终板电位达到一定幅度(肌细胞的阈电位)时,可引发肌细胞膜产生动作电位,从而是骨骼肌细胞产生兴奋。
(七)肌电
骨骼肌在兴奋时,会由于肌纤维动作电位的传导和扩布,而发生电位变化,这种电位变化称为肌电。用适当的方法将骨骼肌兴奋时发生的电位变化引导、记录所得到的图形,称为肌电图(Electromyogram, EMG)。
骨骼肌收缩时的肌电活动通过电极引导,生物放大器放大,显示器显示、计算机数据采集等过程,转变成为可通过计算机进行计算、处理的数据,然后用适当的计算机软件进行分析处理,为医学诊断和科学研究提供可靠的依据。
采集肌电信号的电极有两种,一种是针电极,另一种是表面电极。用针电极采集肌电时需要将电极插入受试者的肌肉内,因此会造成一定程度的损伤,而且不能用于体育科学研究中。用针电极所引导记录的肌电图是运动单位电位,其波形可分为单相波、双相波、三相波和多相波。在体育科学研究中一般用表面电极采集肌电信号。在记录时将电极贴于皮肤表面即可,不会造成损伤。用表面电极引导记录的肌电图往往是许多运动单位电位叠加而成干扰相肌电图。
轻度用力时用针电极从20个不同部位记录到的正常人肱二头肌的运动单位电位
不同程度收缩时骨骼肌肌电图
(表面电极引导)
A 轻度用力收缩(单纯相)
B 中等用力收缩(混合相)
C 重度用力收缩(干扰相)
责编:wenzhi
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>