位置:首页 > 其它资料

基因遗传因果分析论文

2020-03-15发布者:青青草大小:45.54 KB 下载:0

【论文关键词】系统论;基因与遗传;基因治疗 【论文摘要】1937 年美籍奥地利生物学家贝塔朗菲提出了一般系统论原理。系统中每 个要素都处于一定的位置,起着特定的作用。个体发育中,基因按一定的时、空次序有选 择地表达。基因是组成染色体的遗传单位,并证明基因在染色体上作直线排列。一定的基 因在一定的条件下,控制着一定的代谢过程,从而体现在一定的遗传特性和特征的表现上 [1]。基因还可通过突变而改变。随着人类基因谱的逐步阐明、遗传工程技术的充分发展, 基因治疗很可能在临床疾病治疗中产生革命性变化,这就需要研究人员在实践中,用自然 辩证法系统论理论,来指导思想,拓展研究思路,从而解决这一重大难题。 Regardsbetweenthegeneandthehereditycausesandeffectsrelationwiththesystemtheor yviewpoint HUJing-yi 【Abstract】in1937theAmericannationalityAustriabiologistbrightPhilippinesproposedt hegeneralsystemtheoryprinciple.Inthesystemeachessentialfactorallisinthecertainposition ,isplayingthespecificrole.Inontogenesis,geneaccordingtocertainwhen,thespatialorder havethechoiceexpression.Thegeneiscomposesthechromosomethehereditaryunit,andthe proofgenemakesthelinespreadinthechromosome.Thecertaingeneunderthecertainconditio n,iscontrollingthecertainmetabolismprocess,thusmanifestsinthecertainhereditycharact eristicandinthecharacteristicperformanceThegenealsopassablesuddenchangehaschange d.Alongwiththehumangenespectrumgraduallyexpounded,thegeneticengineeringtechnol ogyfulldevelopment,thegenetreatmentverypossiblytreatsattheclinicaldiseasehastherevol utionarychange,thisneedstheresearcherinthepractice,withnaturaldiagnosticmethodsyst emtheorytheory,guidingideology,developmentresearchmentality,thussolvesthissingle layerbigdifficultproblem. 【Keyword】systemtheory;Geneandheredity;Genetreatment 系统论是 21 世纪以来科学技术、文化和社会发展的自然亦必然的思维趋向,是比知识 更有力量的一种客观存在,它是一种新的思维方式,是当代人认识对象的工具和手段。西 沃尔-赖特在 1929 年写到:一个群体中“单个基因的选择系数(即基因的适合度),一定受到 这个群体整个基因频率系统的影响[2]”。本文从系统论观点来分析基因与遗传之间的因果联 系以及基因在临床上的应用。 1 系统论相关论点 1937 年贝塔朗菲提出了一般系统论原理,使人类的思维方式发生了深刻变化。以往研 究问题人们总是把事物分解成若干部分,抽象出最简单的因素来,然后再以部分的性质去 说明复杂事物。这种方法的着眼点在局部或要素,遵循的是单项因果决定论,它不能如实 地说明事物的整体性,不能反映事物之间的联系和相互作用,它只适应认识较为简单的事 物,在人类面临许多规模巨大、关系复杂、参数众多的复杂问题时,就显得无能为力了。 系统中各要素不是孤立地存在着,每个要素在系统中都处于一定的位置上,起着特定的作 用[3]。系统科学方法是认识、调控、改造复杂系统的有效途径,为人们提供了制定系统最 佳方案以实行优化组合和优化管理的手段,为人们提供了新的思维模式,倡导从整体上进 行思维。 2 基因与遗传 20 世纪 20 年代,摩尔根学派在孟德尔的豌豆杂交试验的基础上,开展了遗传规律的 研究,建立了以基因学说为基础理论的细胞遗传学,肯定了基因是遗传的基本单位,存在 于细胞的染色体上。到 30 年代,知道染色体结构和数目的变化会影响到遗传,知道一个基 因可以突变成若干等位基因。到了 40 年代,遗传学有了两个重要的进展或突破:一是初步 发现去氧核糖核酸简称 DNA,是遗传物质;一是提出了一个基因一种酶的原理。直到 50 年代,建立了分子遗传学,解决了有关遗传的若干重大问题。DNA 和另一类核酸即核糖核 酸(RNA)都是由核苷酸所组成的多聚体,是大分子。核苷酸的主要特点存在于所含的有机 碱,即两种嘌呤和两种嘧啶。 1953 年,形成双螺旋的分子结构。根据 DNA 中碱基互补的原理,一个 DNA 分子可以 成为内容一致的两个 DNA 分子。蛋白质是由氨基酸所组成的多聚体,是大分子。组成蛋白 质的可以是一条多肽链或几条多肽链。多肽链就是由若干氨基酸前后连接而成的分子。蛋 白质的合成就是遗传信息从遗传物质流入蛋白质的过程。这包括两个步骤:一是转录,一 是翻译。由于组成 DNA 和 RNA 的零件都是核苷酸,所以遗传信息从 DNA 流入 RNA 叫做 转录。由于蛋白质是由另一种另件(氨基酸)组成的,所以遗传信息从 RNA 流入蛋白质叫做 翻译。这里的 RNA 叫做信使 RNA,意思是说,它是基因遗传信息的使者。在分析蛋白质 分子的合成中也查明了各氨基酸的遗传密码,于是建立了遗传密码理论。遗传信息都是由 遗传密码组成。每一个遗传密码都由三个碱基组成,氨基酸不同,其遗传密码就不同。 从 70 年代开始,分子遗传学的进一步发展,诞生了基因重组技术,即生物基因工程, 它开创了改造生物和创造生物的新时期。 3 用系统论的观点来看待基因与遗传的因果联系 系统科学可以把一个原子看作系统,它也可以把器官、生物机体、家庭、社区、国家、 经济以至生态看作系统。生物体是由细胞构成的多层次的复杂系统。尽管在细胞和分子水 平对发育的分析已取得长期的进展,但个体发育仍不能从分子水平和细胞水平的分析得到 全部解释。个体发育中,基因按一定的时、空次序有选择地表达。这首先表现在细胞表面 形态调节分子的变化,从而导致胚层分离、形态速成运动和组织发育等细胞的集体行为。 我们可以从两方面来考虑环境对基因的自上而下的约束与引导作用。其一,我们知道 环境的改变会迫使生物个体和种群尽可能调节自身以适应环境的变化。显然生物体为适应 环境变化而做的调节又必定会引起生物体内生物化学、生物磁电等的变化。在生物史上地 球环境的巨变是造成大量新物种产生的直接原因。我们可以设想,基因有向缓解环境对生 物压力的方向突变的趋势,如果这一假说成立的话,显然就会使来自上层变化的信息产生 对下层生物体基因变异的自上而下的约束与引导作用。其二,我们知道基因的复杂结构具 有巨大的信息存储能力。生物体的基因中记录了该生命体全部历史的重要信息。 4 基因治疗的前景 随着对基因治疗研究的深入,我们不能忽视子系统的系统性和整体性,不能用局限的、 部分的、单一的观点来以偏概全。事实上,人体的复杂性程度,各个系统的相关性、相互 作用及相互制约程度,远不是我们所能完全解释得了的,只有在系统环境中解决这些难题, 才会有实用价值和临床价值。这就需要研究人员在实践中,用自然辩证法系统论理论,来 指导思想,拓展研究思路,从而解决这一重大难题。
温馨提示:如果当前文档预览出现乱码或未能正常浏览,请先下载原文档进行浏览。
发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

下载需知:

1 该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读

2 除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑修改

3 有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载

4 该文档为会员上传,版权归上传者负责解释,如若侵犯你的隐私或权利,请联系客服投诉

返回顶部