- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
摘 要: 数列是一种定义域,是正整数集或其子集的函数,其图像是对应函数的图像上的一些散点,研究数列的一些性质,可以利用函数的性质来研究.作者对数列的最值进行研究,函数的最值常用图像法、导数法、重要不等式等,以供大家参考。
关键词: 数列 函数 最值
一、利用常见函数图像及导数解决数列最值问题
例1:已知数列{a }满足a =1,a -a =2n-2,则a =?摇 ?摇?摇?摇?摇.
分析:递推关系式为a -a =f(n),求通项用累加法.
解析:a -a =2×1-2?摇?摇a -a =2×2-2a -a =2×3-2,a -a =2×4-2,…,a -a =2n-2,将上式左右两边分别相加,得
a -a =2(1+2+3+…+n)-2n,得a =n -n,所以a =n -3n+3该式对n=1也成立,所以a =n -3n+3.
变式1:已知数列{a }满足a =1,a -a =2n-2,a 的最小值为?摇?摇 ?摇?摇?摇.
分析:二次函数求最值常用配方法和图像法.
解析:a =n -3n+3可看成二次函数f(x)=x -3x+3,其定义域为正整数集.因为f(x)=x -3x+3的对称轴x= ,在对称轴左右的正整数为n=1和n=2,计算f(1)=f(2)=1,所以a 的最小值为1.
变式2:已知数列{a }满足a =1,a -a =2n-2, 的最小值为?摇?摇?摇 ?摇?摇.
分析:f(x)=x+ (k>0)在区间(-∞,- ),( ,+∞)上单调递增,在区间(0, ),(- ,0)上单调递减;f(x)=x+ (k>0,x>0)时,可利用均值不等式求最值,但要注意一"正",二"定",三"相等".
解析: =n+ -3,可看成函数f(x)=x+ -3其定义域为正整数集,由f(x)=x+ -3在(0, )上单调递减,在( ,+∞)上单调递增.在 左右两侧的正整数分别为n=1和n=2,计算f(1)=1,f(2)=1,所以 的最小值为1.
变式3:已知数列{a }满足a =1,a -a =2n-2,na -3n的最大值为?摇?摇 ?摇?摇?摇.
分析:数列的最高次数为3次时,可以看成三次函数,可用导数求最值.
解析:na -3n=n -3n ,可看成函数f(x)=x -3x 其定义域为正整数集,f′(x)=3x -6x,由f′(x)=3x -6x>0,得0
责编:荣秀
下一篇: 也谈中考数学中的阅读理解题
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>