当前位置:首页 > 全部子站 > 军人转业 > 天津

军转干2015年军队文职考试岗位能力:数量关系之立体几何问题(2)

来源:长理培训发布时间:2017-06-11 18:05:15

 二、立体图形的切割和拼接问题

考试中题目出现的求切割和拼接后的面积、表面积和体积变化问题,遵循以下原则: 立体图形切割,则总表面积增加了截面面积的2倍;拼接则总表面积减小了截面面积的2倍。

例题:将一个表面积为36平方米的正方体等分成两个长方体,再将这两个长方体拼成一个大长方体,则大长方体的表面积是:

A.24平方米 B.30平方米 C.36平方米 D.42平方米

:此题答案为D。正方体每个面的面积为36÷6=6平方米。

将正方体平分以后,表面积增加6×2=12平方米;拼成大长方体后,表面积减少2×(6÷2)=6平方米,因此大长方体的表面积为36+12-6=42平方米。

:在切割和拼接过程中,体积不变。根据体积一定,越趋近于球,表面积越小,可知大长方体的表面积大于36平方米,只有D项符合。

三、物体浸水问题

物体浸入水中,水面会上升,水的总体积不变,因此水的变化高度=浸没体积÷容器底面积(行测考试中容器一般为规则立体图形)即物体浸入前后,水的体积变化等于该物体浸入水中的体积。

例题:现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中。如果将其分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为:

A.3.4平方米 B.9.6平方米 C.13.6平方米 D.16平方米

此题答案为C。边长为1米的正方体可以分割成1÷(0.25)3=64个边长为0.25米的小正方体。

如果把边长1米的木质正方体放入水里,与水直接接触的表面积为1×1+0.6×1×4=3.4平方米

由于小立方体浸入水中的总体积与正方体相同,所以每个小正方体浸入水中的比例与立方体相同。因为小正方体的边长是正方体的1/4,所以其与水直接接触的面积是大正方体的1/16,其总共与水直接接触的总面积为64×3.4×1/16=3.4×4=13.6平方米。

四、立方体染色问题

假设将一个立方体切割成边长为原来的1 / n的小立方体,在表面染色,则

(1)三个面被染色的是8个顶角的小立方体;

(2)两个面被染色的是12(n-2)个在棱上的小正方体;

(3)只有一个面被染色的是6(n-2)2个位于外表面中央的小正方体。

(4)都没被染色的是(n-2)3个不在表面的小立方体。

例题:一个边长为8的正立方体,由若干个边长为1的正立方体组成,现在要将大立方体表面涂漆,请问一共有多少个小立方体被涂上了颜色?

A.296 B.324 C.328 D.384

:此题答案为A。边长为8的正立方体共有8×8×8=512个边长为1的小正立方体,不在表面的小正立方体共有6×6×6=216个,所以被染色的小正方体的个数为512-216=296。

责编:文晖

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部