- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
三、解答题
15. 解:(1)原式=3-2+1-12+1=212
(2)原式=3xx-1·(x+1)(x-1)x-xx+1·(x+1)(x-1)x
=3(x+1)-(x-1)
=3x+3-x+1
=2x+4
x=3tan30°-2=3×33-2=3-2时,原式=2x+4=2(3-2)+4=23
16.解:小李第一次购物付款198元,有两种情况:①没有享受打折,直接付款198元;②享受打折后,付款198元。因此,解答此题应分两种情况分别讨论。
①当198元为购物不打折付的钱时,现购物品原价为198元。
设小李第二次购物的原价为x元。则根据题意,列方程:
500×90%+(x-500)×80%=554
解得:x=630
于是小李两次购物的原价共为:
198+630=828(元)。
小张一次性购买这些物品应付:
500×90%+(828-500)×80%=712.4(元)
②当198元为购物打折后付的钱,设购该物品的原价为x元,则根据题意列方程得:
x·90%=198
解得:x=220
又第二次购物的原价为630元,于是小李两次购物的原价共为:
630+220=850(元)
小张一次性购买这些物品应付:
500×90%+(850-500)×80%=730(元)
答:小张需付712.4元或730元。
17.解:(1)购买一组号码中五百万大奖的概率是P(中五百万)=110 000 000,是一千万分之一。
(2)为了确保中大奖五百万,必须买全一千万组号码,至少得花两千万元钱购买彩票。
(3)这种说法不正确,虽然就一组号码而言要么中大奖五百万要么不中,但是中大奖概率极小,不中大奖的概率极大,不是各50%。
18.解:f′(x)=(2x-1)eax+(x2-x-1a)·eax·a
=eax(ax+2)(x-1)
令f′(x)=0,即(ax+2)(x-1)=0,解得x=-2a,或x=1
当a0-2a f′(x)< 0x1
∴f(x)的单调减区间为(-∞,-2a)∪(1,+∞),
单调增区间为(-2a,1)。
当a=-2,即-2a=1时,
f′(x)=e-2x(-2)(x-1)2≤0在R上恒成立。
∴f(x)单调减区间为(-∞,+∞)。
当-21时,f′(x)< 0x< 1或x>-2a,
f′(x)>01 ∴f(x)的单调减区间为(-∞,1)∪(-2a,+∞),
单调增区间为(1,-2a)。
综上,当a1∴a1=2q=2 从而an=2·2n-1=2n
(2)∵bn=an·log12an=-n·2n(n∈N*)
Tn=b1+b2+…+bn=-(1×2+2×22+…+n·2n)①
2Tn=-(1·22+2·23+…+n·2n+1)②
②-①得Tn=(2+22+…+2n)-n·2n+1
∴Tn=(1-n)·2n+1-2
limn→∞Tn+n·2n+1an+2=limn→∞2n+1-22n+2=12
责编:贺娟华
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>