- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
当和定最值问题求解最大量的最小值,最小量的最大值,或者是中间某个量的最值时。我们的求解步骤是:先利用“等均”构造一个等差数列,再利用“盈亏”思想去修饰数列满足题意即可。通过下面这个例子我们来了解这种技巧。
例2.班级有6个男生参加学校组织的体能测试,满分100分,若已知6名男生得分为各不相同的整数,问(1)若总分是530分,则分数最高的最少得了多少分?(2)若总分是570分,则第三名最少得了多少分?
解析:(1)要想分数最高的得分最少,则其他几人的得分应尽可能的高,即成绩尽可能接近(“等均”思想),所以他们的成绩构成公差为1的等差数列。平均分=530÷6=88......2,构造数列90、89、88、87、86、88,这个数列是满足了平均分为88分的,但是最后一名最多85分,88比85多了3分,求平均分时也余下的2分,所以一共多了5分,根据“盈亏”思想,这些多的分数要补到前几名去,尽可能均分,于是分给前5名,每人1分,因此分数最高的最少得了91分。(2)要想第三名得分最少,应让其他5人分数尽可能高,第一名,第二名最多可得100分,99分,3,4,5,6名“等均”,3,4,5,6名的平均分为(570-100-99)÷4=92......4。所以,构造数列100,99,93,92,91,92,第6名最多90分,92比90多了2分,再加上余下的4分,一共多了6分,这6分要补到3,4,5名,每人2分,即第三名最少得95分。
责编:hejuanhua
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>