宇宙飞船在宇宙深处飞行的过程中,发现
A.B两颗均匀球形天体,两天体各有一颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是( )A.两颗卫星的线速度一定相等
B.天体A.B的质量一定不相等
C.天体A.B的密度一定不相等
D.天体A.B表面的重力加速度之比等于它们的半径之比
试卷相关题目
- 1有一双星各以一定的速率绕垂直于两星连线的轴转动,两星与轴的距离分别为R1和R2,转动周期为T,那么下列说法中错误的是( )
A.这两颗星的质量必相等
B.这两颗星的质量之和为 4π2(R1+R2)3GT2
C.两颗星的质量之比为 m1m2= R2R1
D.其中一颗的质量必为 4π2R1(R1+R2)2GT2
开始考试点击查看答案 - 2离地面高度h处的重力加速度是地球表面重力加速度的1/2,则高度h是地球半径的( )
A.2倍
B.1/2倍
C.2倍
D.( 2-1)倍
开始考试点击查看答案 - 3要使两物体间万有引力减小到原来的 18,可采取的方法是( )
A.使两物体的质量各减少一半,距离保持不变
B.使两物体间距离变为原来的2倍,其中一个物体质量减为原来的 12
C.使其中一个物体质量减为原来的 14,距离不变
D.使两物体质量及它们之间的距离都减为原来的 14
开始考试点击查看答案 - 42011年11月3日凌晨,经历近43小时飞行和五次变轨的“神舟八号”飞船飞抵距地面343公里的近圆轨道,与在此轨道的“天宫一号”成功对接;11月16日,“神舟八号”飞船与“天宫一号”成功分离,返回舱于11月17日19时许返回地面.下列有关“天宫一号”和“神舟八号”说法正确的是( )
A.在近圆轨道上的返回舱准备返回地面时需减小速度
B.只要知道“天宫一号”运动的周期,再利用万有引力常量,就可算出地球的质量
C.在对接前,应让“天宫一号”与“神舟八号”在同一轨道上绕地球做圆周运动,然后让“神舟八号”加速追上“天宫一号”并与之对接
D.今后在“天宫一号”内工作的宇航员因受力平衡而在其中悬浮或静止
开始考试点击查看答案 - 5质量为m的物体A在地球表面受到地球的万有引力大小为F,质量为2m的物体B离地面高度等于地球半径,物体B受到地球的万有引力大小为( )
A.2F
B.F
C.F2
D.F4
开始考试点击查看答案 - 6随着我国探月工程的推进,将来我们有望移民月球.假如人类经过较长时间的移居月球,将会对月球的运动产生一些影响(地球、月球仍可视为球体,地球的总质量仍大于月球的总质量,且月球的轨道不变),根据所学的知识,你认为下列判断正确的是( )
A.月球运动的加速度将增大
B.月球运动的周期将增大
C.月球运动的线速度将增大
D.月球运动的角速度速度将增大
开始考试点击查看答案 - 7太阳系八大行星公转轨道可近似看作圆轨道,已知地球与太阳之间的平均距离约为1.5×1011m,结合下表所给的数据,可知火星与太阳之间的平均距离约为( )水星金星地球火星木星土星公转周期(年)0.2410.6151.001.8811.929.5
A.1.2×1011m
B.2.3×1011m
C.4.6×1011m
D.6.9×1011m
开始考试点击查看答案 - 8“重力勘探”是应用地球表面某处重力加速度的异常来寻找矿床的一种技术.如图所示,若在地球表面A处正下方有一均匀分布且半径为R球形矿床,球心与A相距r.矿床的密度为nρ(n>1,ρ为地球的平均密度),万有引力常量为G.则仅由于该矿床的存在,A处的重力加速度的变化量△g为( )
A.△g= 4πR3(n-1)Gρ3r2
B.△g= 4πR3(n+1)Gρ3r2
C.△g= 4πR3Gρ3r2
D.4πR3nGρ3r2
开始考试点击查看答案 - 92013年12月14日21时11分,“嫦娥三号”在月球表面虹湾着陆区成功实现软着陆.标志着我国成为世界上第三个实现探测器登陆月球的国家.若测得“嫦娥三号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T,已知引力常量为G,半径为R的球体体积公式V= 43πR3,则可估算月球的( )
A.密度
B.质量
C.半径
D.自转周期
开始考试点击查看答案 - 102011年美国国家航空航天局(NASA)发现了可能存在生命的行星“开普勒22b“,它与地球相隔600光年,半径约为地球半径的2.4倍.“开普勒22b”绕恒星“开普勒22”运动的周期为290天,轨道半径为R1,地球绕太阳运动的轨道半径为R2,测得R1:R2=0.85.由上述信息可知,恒星“开普勒22”与太阳的质量之比约( )
A.0.1
B.1
C.10
D.100
开始考试点击查看答案