对任意的实数 ,记 ,若 ,其中奇函数 在 时有极小值 , 是正比例函数,函数 与函数 的图象如图所示,则下列关于函数 的说法中,正确的是( )
发布时间:2021-08-05
A.为奇函数
B.有极大值且有极小值
C.的最小值为且最大值为
D.在上不是单调函数
试卷相关题目
- 1设函数 在区间 上的导函数为 , 在区间 上的导函数为 ,若在区间 上 恒成立,则称函数 在区间 上为“凸函数”.已知 ,若对任意的实数 满足 时,函数 在区间上 为“凸函数”,则 的最大值为( )
A.4
B.3
C.2
D.1
开始考试点击查看答案 - 2 的最大值为( )
A.1
B.
C.
D.
开始考试点击查看答案 - 3在R上定义运算 ,若不等式 成立,则实数a的取值范围是( ).
A.{a|}
B.{a|}
C.{a|}
D.{a|}
开始考试点击查看答案 - 4某工厂需要建一个面积为512 m 2的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌新墙所用材料最省时,堆料场的长和宽的比为( )
A.1
B.2
C.
D.
开始考试点击查看答案 - 5若f(x)=- x 2+bln(x+2)在(-1,+∞)上是减函数,则b的取值范围是( )
A.[-1,+∞)
B.(-1,+∞)
C.(-∞,-1]
D.(-∞,-1)
开始考试点击查看答案 - 6已知函数 ,则使函数 有零点的实数 的取值范围是( )
A.
B.
C.
D.
开始考试点击查看答案 - 7定义在R上函数y=f(x)是减函数,且函数y=f(x-1)的图像关于(1,0)成中心对称,若s,t满足不等式f(s 2-2s)≤-f(2t-t 2),则当1≤s≤4时, 的取值范围是( )
A.
B.
C.
D.
开始考试点击查看答案 - 8对实数a与b,定义新运算“?”: .设函数f(x)=(x 2﹣2)?(x﹣x 2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是( )
A.
B.
C.
D.
开始考试点击查看答案 - 9函数 的图像与函数 的图像所有交点的横坐标之和等于
A.2
B.4
C.6
D.8
开始考试点击查看答案 - 10已知函数 ,则不等式x+(x+1)f(x+1)≤1的解集是( )
A.
B.{x|x≤1}
C.
D.
开始考试点击查看答案