绪 论
一、生命活动的基本特征
新陈代谢、兴奋性、生殖。
1、新陈代谢:是指机体与环境之间不断进行物质交换和能量交换,以实现自我更新的过程。包括合成代谢和分解代谢。
2、兴奋性:指可兴奋组织或细胞受到特定刺激时产生动作电位的能力或特性。而刺激是指能引起组织细胞发生反应的各种内外环境的变化。
刺激引起组织兴奋的条件:刺激的强度、刺激的持续时间,以及刺激强度对时间的变化率,这三个参数必须达到某个最小值。在其它条件不变情况下,引起组织兴奋所需刺激强度与刺激持续时间呈反变关系。
衡量组织兴奋性大小的较好指标为:阈值。
阈值:刚能引起可兴奋组织、细胞去极化并达到引发动作电位的最小刺激强度。
3、生殖:生物体生长发育到一定阶段,能够产生与自己相似的个体,这种功能称为生殖。生殖功能对种群的繁衍是必需的,因此被视为生命活动的基本特征之一。
二、生命活动与环境的关系
对多细胞机体而言,整体所处的环境称外环境,而构成机体的细胞所处的环境称为内环境。内、外环境与生命活动相互作用、相互影响。当机体受到刺激时,机体内部代谢和外部活动,将会发生相应的改变,这种变化称为反应。反应有兴奋和抑制两种形式。
★三、人体功能活动的调节机制
机体内存在三种调节机制:神经调节、体液调节、自身调节。
1、神经调节:是机体功能的主要调节方式。调节特点:反应速度快、作用持续时间短、作用部位准确。基本调节方式:反射。反射活动的结构基础是反射弧,由感受器、传入神经、反射中枢、传出神经和效应器五个部分组成。
反射与反应最根本的区别在于反射活动需中枢神经系统参与。
2、体液调节:发挥调节作用的物质主要是激素。激素由内分泌细胞分泌后可以进入血液循环发挥长距离调节作用,也可以在局部的组织液内扩散,改变附近的组织细胞的功能状态,这称为旁分泌。调节特点:作用缓慢、持续时间长、作用部位广泛。(这些特点都是相对于神经调节而言的。)
神经一体液调节:内分泌细胞直接感受内环境中某种理化因素的变化,直接作出相应的反应。
3、自身调节:是指内外环境变化时组织、细胞不依赖于神经或体液调节而产生的适应性反应。举例:(1)心室肌的收缩力随前负荷变化而变化,从而调节每搏输出量的特点是自身调节,故称为异长自身调节。(2)全身血压在一定范围内变化时,肾血流量维持不变的特点是自身调节。
四、生理功能的反馈调控:正反馈和负反馈
负反馈:反馈信息与控制信息的作用方向相反,因而可以纠正控制信息的效应。
负反馈调节的主要意义在于维持机体内环境的稳态,在负反馈情况时,反馈控制系统平时处于稳定状态。
正反馈:反馈信息不是制约控制部分的活动,而是促进与加强控制部分的活动。
正反馈的意义在于使生理过程不断加强,直至最终完成生理功能,在正反馈情况时,反馈控制系统处于再生状态。
生命活动中常见的正反馈有:排便、排尿、射精、分娩、血液凝固等。
五、内环境与稳态
内环境即细胞外液(包括血浆,组织液,淋巴液,各种腔室液等),是细胞直接生活的液体环境。内环境直接为细胞提供必要的物理和化学条件、营养物质,并接受来自细胞的代谢尾产物。内环境最基本的特点是稳态。
稳态是内环境处于相对稳定(动态平衡)的一种状态,是内环境理化因素、各种物质浓度的相对恒定,这种恒定是在神经、体液等因素的调节下实现。稳态的维持主要依赖负反馈。稳态是内环境的相对稳定状态,而不是绝对稳定。
细胞的基本功能
一、细胞膜的基本结构——液态镶嵌模型
该模型的基本内容:以液态脂质双分子层为基架,其中镶嵌着具有不同生理功能的蛋白质分子,并连有一些寡糖和多糖链。
特点:
(1)脂质膜不是静止的,而是动态的、流动的。
(2)细胞膜两侧是不对称的,因为两侧膜蛋白存在差异,同时两侧的脂类分子也不完全相同。
(3)细胞膜上相连的糖链主要发挥细胞间“识别”的作用。
(4)膜蛋白有多种不同的功能,如发挥转动物质作用的载体蛋白、通道蛋白、离子泵等,这些膜蛋白主要以螺旋或球形蛋白质的形式存在,并且以多种不同形式镶嵌在脂质双分子层中,如靠近膜的内侧面、外侧面、贯穿整个脂质双层三种形式均有。
(5)细胞膜糖类多数裸露在膜的外侧,可以作为它们所在细胞或它们所结合的蛋白质的特异性标志。
二、细胞膜物质转运功能
★物质通过细胞膜的转运有以下几种形式:
(一)被动转运:包括单纯扩散和易化扩散两种形式。
1.是指小分子脂溶性物质由高浓度的一侧通过细胞膜向低浓度的一侧转运的过程。跨膜扩散的最取决于膜两侧的物质浓度梯度和膜对该物质的通透性。单纯扩散在物质转运的当时是不耗能的,其能量来自高浓度本身包含的势能。
2.易化扩散:指非脂溶性小分子物质在特殊膜蛋白的协助下,由高浓度的一侧通过细胞膜向低浓度的一侧移动的过程。参与易化扩散的膜蛋白有载体蛋白质和通道蛋白质。
以载体为中介的易化扩散特点如下:(1)竞争性抑制;(2)饱和现象;(3)结构特异性。以通道为中介的易化扩散特点如下:(1)相对特异性;(2)无饱和现象;(3)通道有“开放”和“关闭”两种不同的机能状态。
(二)主动转运,包括原发性主动转运和继发性主动转运。
主动转运是指细胞消耗能量将物质由膜的低浓度一侧向高浓度的一侧转运的过程。主动转运的特点是:(1)在物质转运过程中,细胞要消耗能量;(2)物质转运是逆电-化学梯度进行;(3)转运的为小分子物质;(4)原发性主动转运主要是通过离子泵转运离子,继发性主动转运是指依赖离子泵转运而储备的势能从而完成其他物质的逆浓度的跨膜转运。
最常见的离子泵转运为细胞膜上的钠泵(Na+ -K+泵),其生理作用和特点如下:
(1)钠泵是由一个催化亚单位和一个调节亚单位构成的细胞膜内在蛋白,催化亚单位有与Na+、ATP结合点,具有ATP酶的活性。
(2)其作用是逆浓度差将细胞内的Na+移出膜外,同时将细胞外的K+移入膜内。
(3)与静息电位的维持有关。
(4)建立离子势能贮备:分解的一个ATP将3个Na+移出膜外,同时将2个K+移入膜内,这样建立起离子势能贮备,参与多种生理功能和维持细胞电位稳定。
(5)可使神经、肌肉组织具有兴奋性的离子基础。
(三)出胞和入胞作用。(均为耗能过程)
出胞是指某些大分子物质或物质团块由细胞排出的过程,主要见于细胞的分泌活动。入胞则指细胞外的某些物质团块进入细胞的过程。因特异性分子与细胞膜外的受体结合并在该处引起的入胞作用称为受体介导式入胞。
(3)非脂溶性小分子物质从浓度低向浓度高处转运时需要消耗能量,称为主动转运。体液中的一些离子,如Na+、K+、Ca2+、H+的主动转运依靠细胞膜上相应的离子泵完成。离子泵是一类特殊的膜蛋白,它有相应离子的结合位点,又具有ATP酶的活性,可分解ATP释放能量,并利用能量供自身转运离子,所以离子泵完成的转运称为原发性主动转运。体液中某些小分子有机物,如葡萄糖、氨基酸的主动转运属于继发性主动转运,它依赖离子泵转运相应离子后形成细胞内外的离子浓度差,这时离子从高浓度向低浓度一侧易化扩散的同时将有机小分子从低浓度一侧耦联到高浓度一侧。肠上皮细胞、肾小管上皮细胞吸收葡萄糖属于这种继发性主动转运。
(4)出胞和入胞作用是大分子物质或物质团块出入细胞的方式。内分泌细胞分泌激素、神经细胞分泌递质属于出胞作用;上皮细胞、免疫细胞吞噬异物属于入胞作用。
三、细胞膜的受体功能
1.膜受体是镶嵌在细胞膜上的蛋白质,多为糖蛋白,也有脂蛋白或糖脂蛋白。不同受体的结构不完全相同。
2.膜受体结合的特征:①特异性;②饱和性;③可逆性。
★生物电的表现形式:
静息电位——所有细胞在安静时均存在,不同的细胞其静息电位值不同。
动作电位——可兴奋细胞受到阈或阈上刺激时产生。
局部电位——所有细胞受到阈下刺激时产生。
1.静息电位:细胞处于安静状态下(未受刺激时)膜内外的电位差。
静息电位表现为膜个相对为正而膜内相对为负。
(1)形成条件:
①安静时细胞膜两侧存在离子浓度差(离子不均匀分布)。
②安静时细胞膜主要对K+通透。也就是说,细胞未受刺激时,膜上离子通道中主要是K+通道开放,允许K+由细胞内流向细胞外,而不允许Na+、Ca2+由细胞外流入细胞内。
(2)形成机制:K+外流的平衡电位即静息电位,静息电位形成过程不消耗能量。
(3)特征:静息电位是K+外流形成的膜两侧稳定的电位差。
只要细胞未受刺激、生理条件不变,这种电位差持续存在,而动作电位则是一种变化电位。细胞处于静息电位时,膜内电位较膜外电位为负,这种膜内为负,膜外为正的状态称为极化状态。而膜内负电位减少或增大,分别称为去极化和超级化。细胞先发生去极化,再向安静时的极化状态恢复称为复极化。
2.动作电位:
(1)概念:可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。动作电位的主要成份是峰电位。
(2)形成条件:
①细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内,这种浓度差的维持依靠离子泵的主动转运。(主要是Na+ -K+泵的转运)。
②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透。
③可兴奋组织或细胞受阈上刺激。
(3)形成过程:≥阈刺激→细胞部分去极化→Na+少量内流→去极化至阈电位水平→Na+内流与去极化形成正反馈(Na+爆发性内流)→达到Na+平衡电位(膜内为正膜外为负)→形成动作电位上升支。
膜去极化达一定电位水平→Na+内流停止、K+迅速外流→形成动作电位下降支。
(4)形成机制:动作电位上升支——Na+内流所致。
动作电位的幅度决定于细胞内外的Na+浓度差,细胞外液Na+浓度降低动作电位幅度也相应降低,而阻断Na+通道(河豚毒)则能阻碍动作电位的产生。
动作电位下降支——K+外流所致。
(5)动作电位特征:
①产生和传播都是“全或无”式的。
②传播的方式为局部电流,传播速度与细胞直径成正比。
③动作电位是一种快速,可逆的电变化,产生动作电位的细胞膜将经历一系列兴奋性的变化:绝对不应期——相对不应期——超常期——低常期,它们与动作电位各时期的对应关系是:峰电位——绝对不应期;负后电位——相对不应期和超常期;正后电位——低常期。
④动作电位期间Na+、K+离子的跨膜转运是通过通道蛋白进行的,通道有开放、关闭、备用三种状态,由当时的膜电位决定,故这种离子通道称为电压门控的离子通道,而形成静息电位的K+通道是非门控的离子通道。当膜的某一离子通道处于失活(关闭)状态时,膜对该离子的通透性为零,同时膜电导就为零(电导与通透性一致),而且不会受刺激而开放,只有通道恢复到备用状态时才可以在特定刺激作用下开放。
3.局部电位:
(1)概念:细胞受到阈下刺激时,细胞膜两侧产生的微弱电变化(较小的膜去极化或超极化反应)。或者说是细胞受刺激后去极化未达到阈电位的电位变化。
(2)形成机制:阈下刺激使膜通道部分开放,产生少量去极化或超极化,故局部电位可以是去极化电位,也可以是超极化电位。局部电位在不同细胞上由不同离子流动形成,而且离子是顺着浓度差流动,不消耗能量。
(3)特点:
①等级性。指局部电位的幅度与刺激强度正相关,而与膜两侧离子浓度差无关,因为离子通道仅部分开放无法达到该离子的电平衡电位,因而不是“全或无”式的。
②可以总和。局部电位没有不应期,一次阈下刺激引起一个局部反应虽然不能引发动作电位,但多个阈下刺激引起的多个局部反应如果在时间上(多个刺激在同一部位连续给予)或空间上(多个刺激在相邻部位同时给予)叠加起来(分别称为时间总和或空间总和),就有可能导致膜去极化到阈电位,从而爆发动作电位。
③电紧张扩布。局部电位不能像动作电位向远处传播,只能以电紧张的方式,影响附近膜的电位。电紧张扩布随扩布距离增加而衰减。
4.兴奋的传播:
(1)兴奋在同一细胞上的传导:可兴奋细胞兴奋的标志是产生动作电位,因此兴奋的传导实质上是动作电位向周围的传播。动作电位以局部电流的方式传导,直径大的细胞电阻较小传导的速度快。有髓鞘的神经纤维动作电位以跳跃式传导,因而比无髓纤维传导快。
动作电位在同一细胞上的传导是“全或无”式的,动作电位的幅度不因传导距离增加而减小。
(2)兴奋在细胞间的传递:细胞间信息传递的主要方式是化学性传递,包括突触传递和非突触传递,某些组织细胞间存在着电传递(缝隙连接)。
神经肌肉接头处的信息传递过程如下:
神经末梢兴奋(接头前膜)发生去极化→膜对Ca2+通透性增加→Ca2+内流→神经末梢释放递质ACh→ACh通过接头间隙扩散到接头后膜(终板膜)并与N型受体结合→终板膜对Na+、K+(以Na+为主)通透性增高→Na+内流→终板电位→总和达阈电位→肌细胞产生动作电位。
特点:①单向传递;②传递延搁;③易受环境因素影响。
记忆要点:①神经肌肉接头处的信息传递实际上是“电—化学—电”的过程,神经末梢电变化引起化学物质释放的关键是Ca2+内流,而化学物质ACh引起终板电位的关键是ACh和受体结合后受体结构改变导致Na+内流增加。
②终板电位是局部电位,具有局部电位的所有特征,本身不能引起肌肉收缩;但每次神经冲动引起的ACh释放量足以使产生的终板电位总和达到邻近肌细胞膜的阈电位水平,使肌细胞产生动作电位。因此,这种兴奋传递是一对一的。
③在接头前膜无Ca2+内流的情况下,ACh有少量自发释放,这是神经紧张性作用的基础。
5.兴奋性的变化规律:绝对不应期——相对不应期——超常期——低常期——恢复。
五、肌细胞的收缩功能
1.兴奋收缩耦联过程:
①电兴奋通过横管系统传向肌细胞深处。
②三联管的信息传递。
③纵管系统对Ca2+的贮存、释放和再聚积。
4.肌肉收缩过程:
肌细胞膜兴奋传导到终池→终池Ca2+释放→肌浆Ca2+浓度增高→Ca2+与肌钙蛋白结合→原肌凝蛋白变构→肌球蛋白横桥头与肌动蛋白结合→横桥头ATP酶激活分解ATP→横桥扭动→细肌丝向粗肌丝滑行→肌小节缩短。
5.肌肉舒张过程:与收缩过程相反。
由于舒张时肌浆内钙的回收需要钙泵作用,因此肌肉舒张和收缩一样是耗能的主动过程。
六、肌肉收缩的外部表现和和学分析
1.肌骼肌收缩形式:
(1)等长收缩——张力增加而无长度缩短的收缩,例如人站立时对抗重力的肌肉收缩是等长收缩,这种收缩不做功。
等张收缩——肌肉的收缩只是长度的缩短而张力保持不变。这是在肌肉收缩时所承受的负荷小于肌肉收缩力的情况下产生的。可使物体产生位移,因此可以做功。
整体情况下常是等长、等张都有的混合形式的收缩。
(2)单收缩和复合收缩:
低频刺激时出现单收缩,高频刺激时出现复合收缩。
在复合收缩中,肌肉的动作电位不发生叠加或总和,其幅值不变。因为动作电位是“全或无”式的,只要产生动作电位的细胞生理状态不变,细胞外液离子浓度不变,动作电位的幅度就稳定不变。由于不应期的存在动作电位不会发生叠加,只能单独存在。肌肉发生复合收缩时,出现了收缩形式的复合,但引起收缩的动作电位仍是独立存在的。
收缩形式与刺激频率的关系如下:
刺激时间间隙>肌缩短+舒张——单收缩;
肌缩短时间<刺激时间间隙<肌缩短+舒张——不完全强直收缩;
刺激时间间隙<肌缩短时间——完全强直收缩。
完全强直收缩是在上一次收缩的基础上收缩,因此比单收缩效率高,整体情况下的收缩通常都是完全强直收缩。
2.影响骨骼肌收缩的主要因素:
(1)前负荷:在最适前负荷时产生最大张力,达到最适前负荷后再增加负荷或增加初长度,肌肉收缩力降低。
(2)后负荷:是肌肉开始缩短后所遇到的负荷。
后负荷与肌肉缩短速度呈反变关系。
(3)肌肉收缩力:即肌肉内部机能状态。
钙离子、肾上腺素、咖啡因提高肌肉收缩力。
缺氧、酸中毒、低血糖等降低肌肉的收缩力。
血 液
一、血量与血液的组成
正常人的血液总量约占体重的6%~8%,相当于每公斤体重有60~80ml。
一次失血不超过全血量10%对生命活动无明显影响,超过20%则有严重影响。
血液成分:液体成分——血浆50%~60%
有形成分——血细胞40%~50%
二、血液的功能
1.运输功能:血液是机体内环境与外环境进行物质交换的必由之路。将营养物质运至全身各部分组织细胞,同时将细胞代谢的尾产物运至排泄器官。
2.缓冲功能:血液中含有丰富的缓冲物质,主要是NaHCO3/H2CO3缓冲对,对血液的酸咸度起缓冲作用。细胞、淋巴细胞、单核细胞等都能参与机体的免疫功能。血浆中的凝血因子、抗凝物质、血小板等在机体凝血、止血和抗凝血过程中有重要作用,是一种防御功能。
三、血浆的理化特征
1.比重:血浆比重1.025~1.030,与血浆蛋白浓度成正比。
2.粘滞性:血浆粘滞性为1.6~2.4,与血浆蛋白含量成正比。
3.血浆渗透压
(1)概念:渗透压指的是溶质分子通过半透膜的一种吸水力量,其大小取决于溶质颗粒数目的多少,而与溶质的分子量、半径等特性无关。由于血浆中晶体溶质数目远远大于胶体数目,所以血浆渗透压主要由晶体渗透压构成。血浆胶体渗透压主要由蛋白质分子构成,其中,血浆白蛋白分子量较小,数目较多(白蛋白>球蛋白>纤维蛋白原),决定血浆胶体渗透压的大小。
(2)渗透压的作用
晶体渗透压——维持细胞内外水平衡
胶体渗透压——维持血管内外水平衡
原因:晶体物质不能自由通过细胞膜(见第二章),而可以自由通过有孔的毛细血管,因此,晶体渗透压仅决定细胞膜两侧水份的转移;蛋白质等大分子胶体物质不能通过毛细血管,决定血管内外两侧水的平衡。
(3)注意点:①临床上常用的等渗等张溶液有:0.9%NaCl溶液,5%葡萄糖溶液。
②血浆蛋白含量变化会影响组织液的量,而不会影响细胞内液的量,细胞外液晶体物质浓度的变化则会影响细胞内液量。
四、红细胞的生理特性
1.红细胞的形态:红细胞呈双凹圆盘形,直径约为8μm,无细胞核。
2.红细胞的功能: (1)运输氧和二氧化碳;(2)缓冲体内产生的酸碱物质。这两种功能均由血红蛋白完成,其中的铁离子必须处于亚铁状态(Fe2+)。
3.悬浮稳定性: 以红细胞沉降率(血沉)来表示悬浮稳定性,血沉越决,悬浮稳定性越差,二者呈反变关系。增加血沉的主要原因:红细胞叠连的形成。
影响红细胞叠连的因素不在红细胞本身而在血浆,其中血浆白蛋白通过抑制叠连而使血沉减慢,而球蛋白、纤维蛋白原、胆固醇等促进叠连的形成,从而加速血沉。
4.渗透脆性:是指红细胞在低渗溶液中抵抗膜破裂的一种特性。渗透脆性越大,细胞膜抗破裂的能力越低。
正常红细胞呈双凹圆盘状,在0.45%~0.35%NaCl溶液中开始破裂,而球状红细胞渗透脆性增加,在0.64% NaCl溶液中开始破裂。
五、血液凝固
1.概念:血液由流动的溶胶状态(液体状态)变成不流动的凝胶状态的现象称为血液凝固。这一过程所需时间称为凝血时间。
本质:多种凝血因子参与的酶促生化反应(有限水解反应)。
2.基本过程:
(1)凝血酶原激活物的形成(Xa、Ca2+、V、PF3)。
(2)凝血酶原变成凝血酶。
(3)纤维蛋白原降解为纤维蛋白。
其中,因子X的激活可通过两咱途径实现:内源性激活途径和外源性激活途径。
3.凝血因子的特点:
(1)除因子Ⅳ(Ca2+)和血小板磷脂外,其余凝血因子都是蛋白质。
(2)血液中因子Ⅱ、Ⅶ、Ⅸ、Ⅹ、Ⅺ、Ⅻ等通常以无活性酶原存在。
(3)Ⅶ因子以活性形式存在于血液中,但必须Ⅲ因子存在才能起作用。
(4)部分凝血因子在肝脏内合成,且需VitK参与,所以肝脏病变成VitK缺乏常导致凝血异常。
(5)因子Ⅷ为抗血友病因子,缺乏时凝血缓慢。
4.内、外源凝血途径的不同点:
始动因子 参与反应步骤 产生凝血速度 发生条件
内源性凝血 胶原纤维等激活因子Ⅻ 较多 较慢 血管损伤或试管内凝血
外源性凝血 组织损伤产生因子Ⅲ 较少 较快 组织损伤
5.机休组织损伤时的凝血为:内源性和外源性凝血途径共同起作用,且相互促进。
六、抗凝和纤维蛋白溶解
1.血浆中最重要的抗凝物质是:抗凝血酶Ⅲ和肝素。
肝素通过增强抗凝血酶Ⅲ活性而发挥作用。
2.纤维蛋白溶解系统:
(+):促进作用
(-):抑制作用
3.正常情况下,血流在血管内不凝固的原因:
(1)血流速度快,(2)血管内膜光滑,(3)血浆中存在天然抗凝物质和纤维蛋白溶解系统
七、血小板的生理作用
1.维护血管壁完整性的功能。
2.参与生理止血功能。
(1)血小板粘附、聚集形成松软止血栓,防止出血。
(2)血小板分泌ADP、5-羟色胺、儿茶酚胺等活性物质,ADP使血小板聚集变为不可逆,5-羟色胺等使小动脉收缩,有助于止血。
(3)促进血液凝固,形成牢固止血栓。
八、ABO血型系统
1.血型:血细胞膜外表面特异性抗原类型,通常指红细胞血型。
2.ABO血型的种类:
ABO血型系统中有两种抗原,分别称为A抗原和B抗原,均存在于红细胞膜的外表面,在血浆中存在两种相应的抗体即抗A抗体和抗B抗体。根据红细胞上所含抗原种类将人类血型分为如下血型:
血型 A B AB O
红细胞上的凝集原(抗原) A B A和B H抗原
血清中的凝集素(抗体) 抗B 抗A 无 抗A和抗B
3.抗原本质:血型抗原是镶嵌于红细胞膜上的糖蛋白与糖脂。ABO抗原特异性是在H抗原基础上形成的。
4.抗体本质:ABO血型系统的抗体为天然抗体,主要为IgM,不能通过胎盘。
5.输血原则:同型输血。
无同型血时,可按下列原则:(1)O型输给A、B、AB型;AB型可接受A、B、O型血,(2)必须少量(<300ml),缓慢输血。
6.交叉配血试验,受血者的红细胞与供血者的血清,供血者的红细胞与受血者的血清分别加在一起,观察有无凝集现象。前者为交叉配血的次侧,后者为交互配血的主侧,因为主要应防止供者的红细胞上的抗原被受者血清抗体凝集。
九、Rh血型
特点:(1)大多数人为Rh阳性血。
(2)血清中不存在天然抗体,抗体需经免疫应答反应产生,主要为IgG,可以通过胎盘。
(3)Rh阴性的母亲第二次妊娠时(第一胎为阳性时)可使Rh阳性胎儿发生严重溶血。
血液循环
一、心动周期与心率
1.概念:心脏一次收缩和舒张构成一个机械活动周期称为心动周期。由于心室在心脏泵血活动中起主要作用,所以心动周期通常是指心室活动周期。
2.心率与心动周期的关系:
心动周期时程的长短与心率有关,心率增大,心动周期缩短,收缩期和舒张期都缩短,但舒张期缩短的比例较大,心肌工作的时间相对延长,故心率过快将影响心脏泵血功能。
★3.心脏泵血
(1)射血与充盈血过程(以心室为例):
①心房收缩期:在心室舒张末期,心房收缩,心房内压升高,进一步将血液挤入心室。随后心室开始收缩,进入下一个心动周期。
②等容收缩期:心室开始收缩时,室内压迅速上升,当室内压超过房内压时,房室瓣关闭,而此时主动脉瓣亦处于关闭状态,故心室处于压力不断增加的等容封闭状态。当室内压超过主动脉压时,主动脉瓣开放,进入射血期。
③快速射血期和减慢射血期:在射血期的前1/3左右时间内,心室压力上升很快,射出的血量很大,称为快速射血期;随后,心室压力开始下降,射血速度变慢,这段时间称为减慢射血期。
④等容舒张期:心室开始舒张,主动脉瓣和房室瓣处于关闭状态,故心室处于压力不断下降的等容封闭状态。当心室舒张至室内压低于房内压时,房室瓣开放,进入心室充盈期。
⑤快速充盈期和减慢充盈期:在充盈初期,由于心室与心房压力差较大,血液快速充盈心室,称为快速充盈期,随后,心室与心房压力差减小,血液充盈速度变慢,这段时间称为减慢充盈期。
(2)特点:
①血液在相应腔室之间流动的主要动力是压力梯度,心室的收缩和舒张是产生压力梯度的根本原因。
②瓣膜的单向开放对于室内压力的变化起重要作用。
③一个心动周期中,右心室内压变化的幅度比左心室的小得多,因为肺动脉压力仅为主动脉的1/6。
④左、右心室的搏出血量相等。
⑤心动周期中,左心室内压最低的时期是等容舒张期末,左心室内压最高是快速射血期。因为主动脉压高于左心房内压,所以心室从血液充盈到射血的过程,是其内压从低于左心房内压到超过主动脉压的过程,因此心室从充盈到射血这段时间内压力是不断升高的。而舒张过程中压力是逐渐降低的,左心室内压应在充盈开始之前最低即等容舒张期末最低。
二、心脏泵血功能的评价
1.每搏输出量及射血分数:
一侧心室每次收缩所输出的血量,称为每搏输出量,人体安静状态下约为60~80ml。每搏输出量与心室舒张末期容积之百分比称为射血分数,人体安静时的射血分数约为55%~65%。射血分数与心肌的收缩能力有关,心肌收缩能力越强,则每搏输出量越多,射血分数也越大。
2.每分输出量与心指数:
每分输出量=每搏输出量×心率,即每分钟由一侧心室输出的血量,约为5~6L。
心输出量不与体重而是与体表面积成正比。
心指数:以单位体表面积(m2)计算的心输出量。
3.心脏作功
心脏收缩将血液射入动脉时,是通过心脏作功释放的能量转化为血液的动能和压强能,以驱动血液循环流动。
三、心音
1.第一心音与第二心音的异同:
标志 心音特点 主要形成原因
第一心音 心室收缩开始 音调低,历时较长 心室肌收缩,房室瓣关闭
第二心音 心室舒张开始 音调高,历时较短 半月瓣关闭振动,血流冲击动脉壁的振动
2.第一心音和第二心音形成机制:
(1)第一心音是心室收缩期各种机械振动形成的,这一时期从房室瓣关闭到半月瓣关闭之前。其中心肌收缩、瓣膜启闭,血流对血管壁的加压和减压作用都引起机械振动,从而参与心音的形成。但各种活动产生的振动大小不同,以瓣膜的关闭作用最明显,因此第一心音中主要成分是房室瓣关闭。
(2)第二心音是心室舒张期各种机械振动形成的,主要成分是半月瓣关闭。
3.第三心音和第四心音:
是一种低频率振动,其形成可能与心房收缩和早期快速充盈有关。在儿童听到第三、第四心音属正常,在成人多为病理现象。
★四、影响心输出量的因素
心输出量是搏出量和心率的乘积,凡影响到搏出量或心率的因素都将影响心输出量。心肌收缩的前负荷、后负荷通过异长自身调节机制影响搏出量,而心肌收缩能力通过等长自身调节机制影响搏出量。
1.前负荷对搏出量的影响:
前负荷即心室肌收缩前所承受的负荷,也就是心室舒张末期容积,与静脉回心血量有关。前负荷通过异长自身调节的方式调节心搏出量,即增加左心室的前负荷,可使每搏输出量增加或等容心室的室内峰压升高。这种调节方式又称starling机制,是通过改变心肌的初长度从而增强心肌的收缩力来调节搏出量,以适应静脉回流的变化。
2.后负荷对搏出量的影响:
心室射血过程中,大动脉血压起着后负荷的作用。后负荷增高时,心室射血所遇阻力增大,使心室等容收缩期延长,射血期缩短,每搏输出量减少。但随后将通过异长和等长调节机制,维持适当的心输出量。
3.心肌收缩能力对搏出量的影响:
心肌收缩能力又称心肌变力状态,是一种不依赖于负荷而改变心肌力学活动的内在特性。通过改变心肌变力状态从而调节每搏输出量的方式称为等长自身调节。
心肌收缩能力受多种因素影响,主要是由影响兴奋—收缩耦联的因素起作用,其中活化横桥数和肌凝蛋白ATP酶活性是控制心肌收缩力的重要因素。另外,神经、体液因素起一定调节作用,儿茶酚胺、强心药,Ca2+等加强心肌收缩力;乙酰胆碱、缺氧、酸中毒,心衰等降低心肌收缩力,所以儿茶酚胺使心肌长度—张力曲线向左上移位,使张力—速度曲线向右上方移位,乙酰胆碱则相反。
4.心率对心输出量的影响:
心率在40~180次/min范围内变化时,每分输出量与心率成正比;心率超过180次/min时,由于快速充盈期缩短导致搏出量明显减少,所以心输出量随心率增加而降低。
心率低于40次/min时,也使心输量减少。
五、心肌细胞的类型
1.工作细胞:心房肌、心室肌细胞,为快反应细胞,具有兴奋性、传导性、收缩性、无自律性。
2.特殊传导系统:具有兴奋性、传导性、自律性(除结区),但无收缩性。
特殊传导系统包括:(1)窦房结、房室交界(房结区、结希区)——慢反应细胞。其中,房室交界的结区细胞无自律性,传导速度最慢,是形成房—室延搁的原因。
(2)房室束、左右束支、浦肯野氏纤维——快反应细胞
3.区分快反应细胞和慢反应细胞的标准:动作电位0期上升的速度。快反应细胞0期去极化速度快。多由Na+内流形成,慢反应细胞0期去极化速度慢,由Ca2+内流形成。
六、心室肌细胞的跨膜电位及其形成原理
1.静息电位——K+外流的平衡电位。
2.动作电位——复极化复杂,持续时间较长。
0期(去极化)——Na+内流接近Na+电化平衡电位,构成动作电位的上升支。
1期(快速复极初期)——K+外流所致。
2期(平台期)——Ca2+、Na+内流与K+外流处于平衡。
平台期是心室肌细胞动作电位持续时间很长的主要原因,也是心肌细胞区别于神经细胞和骨骼肌细胞动作电位的主要特征。
3期(快速复极末期)——Ca2+内流停止,K+外流增多所致。
4期(静息期)——工作细胞3期复极完毕,膜电位基本上稳定在静息电位水平,细胞内外离子浓度维持依靠Na+—K+泵的转运。自律细胞无静息期,复极到3期末后开始自动去极化,3期末电位称为最大复极电位。
3.心室肌细胞与窦房结起搏细胞跨膜电位的不同点:
静息电位/最大舒张电位值 阈电位 0期去极化速度 0期结束时膜电位值 去极幅度 4期膜电位 膜电位分期
心室肌细胞 静息电位值-90mV -70mV 迅速 +30mV(反极化) 大(120mV) 稳定 0、1、2、3、4共5个时期
窦房结细胞 最大舒张电位-70mV -40mV 缓慢 0mV(不出现反极化) 小(70mV) 不稳定,可自动去极化 0、3、4共3期,无平台期
4.心室肌与快反应自律细胞膜电位的不同点:
快反应自律细胞4期缓慢去极化。(起搏电流由Na+、Ca2+内流超过K+外流形成。)
七、心肌细胞电生理特性
1.自律性:
(1)心肌的自律性来源于特殊传导系统的自律细胞,其中窦房结细胞的自律性最高,称为起搏细胞,是正常的起搏点。潜在起搏点的自律性由高到低顺序为:房室交界区→房室束→浦肯野氏纤维。
(2)窦房结细胞通过抢先占领和超驱动压抑(以前者为主)两种机制控制潜在起搏点。
(3)心肌细胞自律性的高低决定于4期去极化的速度即Na+、Ca2+内流超过K+外流衰减的速度,同时还受最大舒张电位和阈电位差距的影响。
2.传导性:
心肌细胞之间通过闰盘连接,整块心肌相当于一个机能上的合胞体,动作电位以局部电流的方式在细胞间传导。
传导的特点:(1)主要传导途径为:窦房结→心房肌→房室交界→房室束及左右束支→浦肯野氏纤维→心室肌
(2)房室交界处传导速度慢,形成房—室延搁,以保证心房、心室顺序活动和心室有足够充盈血液的时间。
(3)心房内和心室内兴奋以局部电流的方式传播,传导速度快,从而保证心房或心室同步活动,有利于实现泵血功能。
心肌兴奋传导速度与细胞直径成正比,与动作电位0期去极化速度和幅度成正变关系。
3.兴奋性:
(1)动作电位过程中心肌兴奋性的周期变化:有效不应期→相对不应期→超常期,特点是有效不应期较长,相当于整个收缩期和舒张早期,因此心肌不会出现强直收缩。
(2)影响兴奋性的因素:Na+通道的状态、阈电位与静息电位的距离等。
另外,血钾浓度也是影响心肌兴奋性的重要因素,当血钾逐渐升高时,心肌的兴奋性会出现先升高后降低的现象。血中K+轻度或中度增高时,细胞膜内外K+浓度梯度减小,静息电位绝对值减小,距阈电位接近,兴奋性增高;当血中K+显著增高,静息电位绝对值过度减小时,Na+通道失活,兴奋性则完全丧失。因此,血中K+逐步增高时,心肌兴奋性先升高后降低。
(3)期前收缩和代偿间隙:
心室肌在有效不应期终结之后,受到人工的或潜在起搏点的异常刺激,可产生一次期前兴奋,引起期前收缩。由于期前兴奋有自己的不应期,因此期前收缩后出现较长的心室舒张期,这称为代偿间隙。
4.收缩性:
(1)心肌收缩的特点:①同步收缩 ②不发生强直收缩 ③对细胞外Ca2+的依赖性。
(2)影响心肌收缩性的因素:Ca2+、交感神经或儿茶酚胺等加强心肌收缩力,低O2、酸中毒、乙酰胆碱等减低心肌的收缩力。
八、植物性神经对心脏活动的影响
1.迷走神经对心脏活动的影响:迷走神经末梢分泌乙酰胆碱,与心肌细胞膜上的M受体结合,产生负性变力、变时、变传导作用。
2.交感神经对心脏活动的影响:交感神经末梢分泌去甲肾上腺素,与心肌细胞膜上的α、β受体结合,产生正性变力、变时、变传导作用。
3.植物性神经对心脏活动的作用机制:
(1)迷走神经→乙酰胆碱→提高K+通道的通透性→促进K+外流。
(2)交感神经→去甲肾上腺素→增加Ca2+通道通透性。
十一、动脉血压
1.血压:血管内流动的血液对单位面积血管壁的侧压力,一般所说的动脉血压指主动脉压,通常用在上臂测得的肱动脉压代表。
2.形成血压的基本条件:(1)心血管内有血液充盈;(2)心脏射血。
3.动脉血压的形成:(1)前提条件:血流充盈;(2)基本因素:心脏射血和外周阻力。
★4.影响动脉血压的因素:
(1)每搏输出量:主要影响收缩压。
(2)心率:主要影响舒张压。
(3)外周阻力:主要影响舒张压(影响舒张压的最重要因素)。
(4)主动脉和大动脉的弹性贮器作用:减小脉压差。
(5)循环血量和血管系统容量的比例:影响平均充盈压。
5.动脉脉搏:每一个心动周期中,动脉内的压力发生周期性的波动,引起动脉血管壁的扩张与回缩的起伏。
十二、静脉血压与静脉回流
1.静脉血压远低于动脉压,而且越靠近心脏越低。静脉压分为中心静脉压和外周静脉压。
2.中心静脉压指胸腔内大静脉或右心房的压力。正常值为:0.4~1.2kPa(4~12cmH2O),它的高低取决于心脏射血能力和静脉回心血量的多少。中心静脉压升高多见于输液过多过快或心脏射血功能不全。
★3.影响静脉回流的因素:
(1)静脉回流的动力是静脉两端的压力差,即外周静脉压与中心静脉压之差,压力差的形成主要取决于心脏的收缩力,但也受呼吸运动、体位、肌肉收缩等的影响。
(2)骨骼肌的挤压作用作为肌肉泵促进静脉回流。
(3)呼吸运动通过影响胸内压而影响静脉回流。
(4)人体由卧位转为立位时,回心血量减少。
十三、微循环的组成及血流通路
1.微循环是指微动脉和微静脉之间的血液循环,是血液与组织细胞进行物质交换的场所。
2.微循环3条途径及其作用:
(1)迂回通路(营养通路):①组成:血液从微动脉→后微动脉→毛细血管前括约肌→真毛细血管→微静脉的通路;②作用:是血液与组织细胞进行物质交换的主要场所。
(2)直捷通路:①组成:血液从微动脉→后微动脉→通血毛细血管→微静脉的通路;②作用:促进血液迅速回流。此通路骨骼肌中多见。
(3)动-静脉短路:①组成:血液从微动脉→动-静脉吻合支→微静脉的通路;②作用:调节体温。此途径皮肤分布较多。
★十四、心血管活动的神经调节——心血管反射
1.减压反射
(1)基本过程:动脉血压升高→刺激颈动脉窦和主动脉弓压力感受器→经窦神经和减压神经将冲动传向中枢→通过心血管中枢的整合作用→导致心迷走神经兴奋、心交感抑制、交感缩血管纤维抑制→心输出量下降、外周阻力降低,从而使血压恢复正常。
(2)特点:①压力感受器对波动性血压敏感。
②窦内压在正常平均动脉压(100mmHg左右)上/下变动时,压力感受性反射最敏感。
③减压反射对血压变化及时纠正,在正常血压维持中发挥重要作用。
2.心肺感受器反射
(1)在心房、心室、肺循环大血管壁上存在的感受器总称为心肺感受器。
(2)反射过程:牵拉、化学物质→心肺感受器→传入神经→中枢→传出神经→心率↓、心输出量↓、外周阻力↓、→BP↓。
(3)意义:调节血量、体液量及其成分。
★十五、心血管活动的体液调节
1.肾上腺素和去甲肾上腺素
去甲肾上腺素或肾上腺素与心肌细胞上β1受体结合产生正性变力、变时、变传作用,与血管平滑肌上的α受体结合使血管收缩。
肾上腺素能与血管平滑肌上的β2受体结合引起血管舒张。
2.肾素-血管紧张素-醛固酮系统
血管紧张素Ⅱ的作用:①使全身微动脉、静脉收缩,血压升高,回心血量增多;②增加交感缩血管纤维递质释放量;③使交感缩血管中枢紧张;④刺激肾上腺合成和释放醛固酮;⑤引起或增强渴觉、导致饮水行为。
3.心钠素:
(1)作用:①心搏出量减少、心率减慢、外周血管舒张;
②引起肾脏排水、排钠增多;
③抑制肾素、醛固酮、血管升压素的释放,当动脉血压升高时,颈动脉窦压力感受器传入冲动增加,抑制交感缩血管中枢,同时心钠素分泌增加。血压升高时,保钠、保水及缩血管激素分泌减少,而排钠、排水激素分泌增多。心钠素是利尿、利钠激素,血压升高分泌增多。
4. 局部体液调节因素:
激肽、组胺、组织代谢产物等调节局部血流量。
1.组织液是血浆从毛细血管壁滤过而形成的,除不含大分子蛋白质外,其它成分基本与血浆相同。
2.血浆从毛细血管滤过形成组织液的动力——有效滤过压。
有效滤过压=(毛细血管血压+组织液胶体渗透压)-(血浆胶体渗透压+组织液静水压)
3.影响组织液生成的因素:
(1)有效滤过压;(2)毛细血管通透性;(3)静脉和淋巴回流等等。
呼 吸
★一、呼吸过程
呼吸全过程包括三个相互联系的环节:(1)外呼吸,包括肺通气和肺换气;(2)气体在血液中的运输;(3)内呼吸。
掌握要点:(1)外呼吸是大气与肺进行气体交换以及肺泡与肺毛细血管血液进行气体交换的全过程。呼吸性细支气管以上的管腔不进行气体交换,仅是气体进出肺的通道,称为传送带。对肺泡的气体交换来说,传送带构成解剖无效腔。而呼吸性细支气管及以下结构则可进行气体交换,称为呼吸带,是气体交换的结构。呼吸带内不能进行气体交换的部分则成为肺泡无效腔。正常肺组织内肺泡无效腔为零,在病理情况下,可出现较大的肺泡无效腔,它和解剖无效腔一起构成生理无效腔,所以,生理无效腔随肺泡无效腔增大而增大。
(2)内呼吸指的是血液与组织细胞间的气体交换,而细胞内的物质氧化过程也可以认为是内呼吸的一部分。
二、肺通气:气体经呼吸道出入肺的过程
1.肺通气的直接动力——肺泡气与大气之间的压力差(指混合气体压力差,而不是某种气体的分压差)。
肺通气的原始动力——呼吸运动。
平静呼吸(安静状态下的呼吸)时吸气是主动的,呼气是被动的,即吸气动作是由吸气肌收缩引起,而呼气动作则主要是吸气肌舒张引起,而不是呼气肌收缩。用力呼吸时,吸气和呼气都是主动的。
吸气肌主要有膈肌和肋间外肌,呼气肌主要是肋间内肌。吸气肌收缩可使胸廓容积增大,肺内气压降低,引起吸气过程。主要由膈肌完成的呼吸运动称腹式呼吸,主要由肋间外肌完成的呼吸运动称为胸式呼吸。正常生理状况下,呼吸运动是胸式和腹式的混合型式。
2.肺通气阻力:包括弹性阻力和非弹性阻力,平静呼吸时弹性阻力是主要因素。
(1)弹性阻力指胸郭和肺的弹性回缩力(主要来自肺),其大小常用顺应性表示,顺应性=1/弹性阻力。肺的顺应性可用单位压力的变化引起多少容积的改变来表示,它与弹性阻力、表面张力成反变关系,顺应性越小表示肺越不易扩张。在肺充血、肺纤维化时顺应性降低。
肺泡的回缩力来自肺组织的弹力纤维和肺泡的液一气界面形成的表面张力。
(2)非弹性阻力包括气道阻力、惯性阻力和组织的粘滞阻力,其中气道阻力主要受气道管经大小的影响。使气道平滑肌舒张的因素有:跨壁压增大、肺实质的牵引、交感神经兴奋、PGE2、儿茶酚胺类等。
使气道平滑肌收缩的因素有:副交感神经兴奋、组织胺、PGF2→5-HT、过敏原等。
平静呼吸时气道阻力主要发生在直径2mm细支气管以上的部位。
三、胸内压:即胸膜腔内的压力
1.胸膜腔是由胸膜壁层与胸膜脏层所围成的密闭的潜在的腔隙,其间仅有少量起润滑作用的浆液,无气体存在。
2.胸内压大小:正常情况下,胸内压力总是低于大气压,故称为胸内负压。胸内压=大气压(肺内压)-肺回缩力,在吸气末和呼气末,肺内压等于大气压,这时胸内压=-肺回缩力,故胸内负压是肺的回缩力造成的。
3.胸内负压形成原因:由于婴儿出生后胸廓比肺的生长快,而胸腔的壁层和脏层又粘在一起,故肺处于被动扩张状态,产生一定的回缩力。吸气末回缩力大,胸内负压绝对值大,呼气时,胸内负压绝对值变小。
4.胸内负压的意义:
(1)保持肺的扩张状态。
(2)促进血液和淋巴液的回流(导致胸腔内静脉和胸导管扩张)。
四、肺换气
即肺泡与肺毛细血管血液之间的气体交换。
1.结构基础:呼吸膜(肺泡膜),包括六层结构:(1)单分子的表面活性物质层和肺泡液体层;(2)肺泡上皮层;(3)上皮基底膜层;(4)组织间隙层;(5)毛细血管基底膜层;(6)毛细血管内皮细胞层。
2.肺换气的动力:气体的分压差。
分压是指在混合气体中某一种气体所占的压力。
3.肺换气的原理:
肺换气与组织换气的原理完全相同。在肺部,氧气从分压高的肺泡通过呼吸膜扩散到血液,而二氧化碳则从分压高的肺毛细血管血液中扩散到分压低的肺泡中。
4.影响肺换气的因素:
(1)呼吸膜的面积和厚度影响肺换气。在肺组织纤维化时,呼吸膜面积减小,厚度增加,将出现肺换气效率降低。凡影响到呼吸膜的病变均将影响肺换气,而呼吸道的病变首先影响的是肺通气,仅当肺通气改变造成肺泡气体分压变化时才影响到肺换气。
(2)气体分子的分子量,溶解度以及分压差也影响肺换气。
O2的分子量小于CO2,肺泡与血液间O2分压差大于CO2分压差,仅从这两方面看,O2的扩散速度比CO2快,但由于CO2在血浆中的溶解度远大于O2(24倍),故综合结果是CO2比O2扩散速度快,所以当肺换气功能不良时,缺O2比CO2潴留明显。
(3)通气/血流比值是影响肺换气的另一重要因素。
通气/血流比值(V/Q)是指每分钟肺泡通气量与每分肺血流量的比值,正常值为0.84左右。V/Q>0.84表示肺通气过度或肺血流量减少,这意味着部分肺泡无法进行气体交换,相当于肺泡无效腔增大。
V/Q<0.84表示肺通气不足或血流过剩或两者同时存在,这意味着有部分静脉血流过无气体的肺泡后再回流入静脉(动脉血),也就是发生了功能性动—静脉短路。
六、肺容量与肺通气量
1.潮气量:平静呼吸时,每次吸入或呼出的气量。
2.余气量:在尽量呼气后,肺内仍保留的气量。
3.功能余量=余气量+补呼气量。
4.肺总容量=潮气量+补吸气量+补呼气量+余气量。
5.肺活量:最大吸气后,从肺内所能呼出的最大气量。
6.时间肺活量:是评价肺通气功能的较好指标,正常人头3秒分别为83%、96%、99%的肺活量。时间肺活量比肺活量更能反映肺通气状况,时间肺活量反映的为肺通气的动态功能,测定时要求以最快的速度呼出气体。
7.每分肺通气量=潮气量×呼吸频率。
8.每分钟肺泡通气量=(潮气量-无效腔气量)×呼吸频率。
七、呼吸中枢及呼吸节律的形式
1.是指中枢神经系统内产生和调节呼吸运动的神经细胞群,分布在大脑皮层、间脑、脑桥、延髓、脊髓等部位。
呼吸运动的基本调节中枢在脑桥和延髓呼吸中枢。
基本呼吸节律产生于延髓,延髓是自主呼吸的最基本中枢。
2.呼吸中枢的结构和功能特性:
呼吸节律的发生依赖脑干两侧多个不同部位的多组神经元活动的组合,这些部位包括延髓呼吸中枢和呼吸调整中枢等。
(1)延髓呼吸中枢包括背侧呼吸组和腹侧呼吸组。背侧呼吸组实际上是孤束核的腹外侧核,大多数为吸气相关神经元,轴突交叉至对侧终止至脊髓颈、胸段的膈神经和肋间神经的运动神经元。腹侧呼吸组包括疑核、后疑核、包氏复合体等神经核团,其中既含有吸气相关神经元又含有呼气相关神经元。
(2)呼吸调整中枢包括脑桥前端的2对神经核团,即臂旁内侧核和相邻的Kolliker-Fuse复合体。其作用可能是传递冲动给吸气切断机制,使吸气及时终止,向呼气转化。此作用与刺激迷走神经引起的吸气向呼气转化相似,如果同时切除呼吸调整中枢、迷走神经传入纤维,动物将出现长吸气呼吸。
3.呼吸节律形成的假说——吸气切断机制:
引起吸气向呼气转化的信息来自三个方面:①吸气神经元;②呼吸调整中枢的纤维投射;③肺牵张感受器兴奋经传入神经将信息传至吸气切断机制。
★八、呼吸的反射性调节
1.肺牵张反射(黑—伯反射):感受器位于气管和支气管平滑肌内,是牵张感受器,传入纤维是通过迷走神经粗纤维进入延髓。
肺牵张反射包括肺扩张时抑制吸气的肺扩张反射和肺缩小时引起吸气的肺缩小反射。平静呼吸时,这两种反射都不参与人的呼吸调节,仅在病理情况下发挥作用。
2.肺毛细血管旁(J)感受器引起的呼吸反射:
J感受器是位于肺胞壁毛细血管的组织间隙内,它接受组织间隙膨胀作用的刺激,反射地引起呼吸变浅变快。
九、化学因素对呼吸的调节
1.调节呼吸的化学因素:动脉血或脑脊液中的O2、CO2、H+。
2.中枢化学感受器与外周化学感受器的异同点:
位置 感受细胞 感受刺激
中枢感受器 延髓腹外侧浅表部位 神经细胞 [H+]↑(pH↓)p(CO2)↑
外周感受器 颈动脉体和主动脉体 Ⅰ型细胞 pH↓、p(CO2)↑、p(O2)↓
3.CO2对呼吸的调节:CO2对呼吸有很强的刺激作用,一定水平的p(CO2)对维持呼吸中枢的兴奋性是必要的。CO2通过刺激中枢和外周化学感受器,使呼吸加深加快,其中刺激中枢化学感受器是主要途径。
CO2是调节呼吸的最重要的生理性体液因子,因为:血中CO2变化既可直接作用于外周感受器,又可以增高脊液中H+浓度作用于中枢感受器;而血中H+主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢;O2含量变化不能刺激中枢化学感受器,同时低O2对中枢则是抑制作用。
4.[H+]对呼吸的调节:血液中[H+]升高通过刺激中枢和外周化学感受器,使呼吸加强。H+主要作用于外周感受器,H+通过血脑屏障进入脑脊液比较缓慢,而中枢感受器的有效刺激是脑脊液中的H+。
5.低O2对呼吸的调节:O2含量变化不能刺激中枢化学感受器,p(O2)降低兴奋外周化学感受器,对中枢则是抑制作用。
6.中枢化学感受器的直接生理刺激是[H+]变化而不是O2、CO2的变化。
十、气体在血液中的运输
1.氧气的运输:包括物理溶解和化学结合。
(1)物理溶解量取决于该气体的溶解度和分压大小。
(2)化学结合的形式是氧合血红蛋白,这是氧运输的主要形式,占98.5%,正常人每100ml动脉血中Hb结合的O2约为19.5ml。
(3)Hb是运输O2的主要工具,Hb与O2结合特点如下:
①可逆性结合;②Hb中的Fe2+仍然是亚铁状态;③是氧合而不是氧化;④结合与解离都不需酶催化,取决于血中p(O2)的高低;⑤结合或解离曲线S型,与Hb的变构效应有关。
2.二氧化碳的运输:
(1)运输形式:物理溶解占5%,化学结合:HCO3-占88%,氨基甲酸血红蛋白占7%;(2)O2与Hb结合将促使CO2释放,这一效应称何尔登效应。
3.氧解离曲线的特点:呈S型
(1)上段较平坦,氧分压在70m/100mmHg范围变化时,Hb氧饱和度变化不大。
(2)中段较陡,是HbO2 释放O2部分。
(3)下段最陡,HbO2稍降,就可大大下降,这有利于运动时组织的供氧。下段代表O2贮备。
4.影响氧解离曲线的因素:
[H+]↑、pCO2、温度升高2、3-二磷酸甘油酸(2、3-DPG)均使氧解离曲线右移,释放O2增多供组织利用。Hb与O2的结合还为其自身性质所影响。
酸度增加降低Hb与氧亲和力的效应称为波尔效应。
消化和吸收
一、消化和吸收的基本概念
消化:食物在消化道内被分解成可吸收的小分子物质的过程。
吸收:食物消化后的小分子物质通过消化道粘膜进入血液和淋巴液的过程。
消化的方式:机械消化和化学消化。
机械消化依赖消化道平滑肌的运动,化学消化依赖消化液中所含消化酶的作用。
消化液由各种消化腺分泌,主要成分是水、无机盐和有机物。
无机盐调节消化道的酸碱环境和渗透压、以便一些重要物质的消化和吸收。有机物中最重要的是消化酶。其次是粘液,粘液由空腔脏器分泌(所以胆汁和胰液中不含粘液),对消化道粘膜具有保护作用。
二、消化道平滑肌的特性
消化道平滑肌的一般特性:兴奋性较骨骼肌低、不规则的节律性、紧张性、伸展性、对刺激的特异敏感性即对牵张、温度和化学刺激敏感而对切割、电刺激等不敏感。
三、胃肠激素
1.概念:在胃肠道的粘膜内存在有数十种内分泌细胞,它们分泌的激素统称为胃肠激素。胃肠激素的化学成分为多肽,可作为循环激素起作用,也可作为旁分泌物在局部起作用或者分泌入肠腔发挥作用。由于胃肠道粘膜面积大,所含内分泌细胞数量大,故胃肠道是体内最大的内分泌器官。
2.胃肠激素的生理作用:
(1)调节消化腺的分泌和消化道的运动。
(2)调节其它激素的释放,如抑胃肽刺激胰岛素分泌。
(3)营养作用,如胃泌素促进胃粘膜细胞增生。
3.脑-肠肽:
指中枢神经系统和胃肠道内双重分布的多肽,例如:胃泌素、胆囊收缩素、生长抑素等多肽。
四、消化系统的神经支配
消化系统受植物性神经系统和肠内神经系统的双重支配,交感神经释放去甲肾上腺素对胃肠运动和分泌起抑制作用,付交感神经通过迷走神经和盆神经支配肠胃,释放乙酰胆碱和多肽,调节胃肠功能。
内在神经包括粘膜下神经丛和肌间神经丛,既包括传入神经元、传出神经元也包括中间神经元,能完成局部反射。
目前认为,胃的容受性舒张,机械刺激引起的小肠充血等,均为神经兴奋释放VIP所致,VIP能神经的作用是舒张平滑肌,舒张血管和加强小肠、胰腺的分泌活动。
五、胃内的消化
1.胃液的成分:
(1)盐酸,又称胃酸,基础酸排出量为0.5mmol/L,最大酸排出量为20~25mmol/L。盐酸由壁细胞分泌,其排出量与壁细胞数目成正比。
(2)胃蛋白酶原,由泌酸腺的主细胞合成,在胃腔内经盐酸或已有活性的胃蛋白酶作用变成胃蛋白酶,将蛋白质分解成膘、胨及少量多肽。该酶作用的最适pH为2,进入小肠后,酶活性丧失。
(3)粘液,由粘液细胞和上皮细胞分泌,起润滑和保护作用。
(4)内因子,由壁细胞分泌的一种糖蛋白,其作用是在回肠部帮助维生素B12吸收,内因子缺乏将发生恶性贫血。
2.盐酸的作用:(1)激活胃蛋白质酶原、提供胃蛋白酶作用的酸性环境;(2)杀死进入胃内的细菌,保持胃和小肠的相对无菌状态;(3)在小肠内促进胆汁和胰液的分泌;(4)有助于小肠对铁和钙的吸收等。但盐酸过多会引起胃、十二指肠粘膜的损伤。
六、胰液的作用及分泌调节
1.胰液为碱性液体(中和进入小肠内的胃酸)。主要成分有碳酸氢盐和多种消化酶。这些消化酶均由胰腺的腺泡细胞分泌。
(1)碳酸氢盐:由胰腺的小导管上皮细胞分泌,能中和进入十二指肠的胃酸,保护胃粘膜,同时,为胰酶提供适宜的pH环境。
(2)胰淀粉酶:分解淀粉为麦芽糖和麦芽寡糖。
(3)胰脂肪酶:分解脂肪为甘油和脂肪酸。
(4)胰蛋白酶和糜蛋白酶:分解蛋白质为多肽和氨基酸。
(5)核酸酶:包括DNA酶和RNA酶,分别消化DNA和RNA。
记忆方法:
(1)胰液为消化系统内最重要的消化液,因此必然含有消化三大主要营养物质的酶和分解核苷酸的酶。
(2)胰液中分解脂肪、淀粉、核苷酸的酶正常情况下有活性,而分解蛋白质的胰蛋白酶和摩蛋白酶则以酶原的形式存在于正常胰液中,仅在消化期间被激活,原因是分解蛋白质的酶对自身有消化作用,基于同样原因胃蛋白酶也以酶原形式存在。
(3)胰液缺乏时脂肪、蛋白质消化受影响,而碳水化合物消化不受影响,原因是碳水化合物容易消化,同时,唾液中的淀粉酶,小肠液中的双糖酶可分解碳水化合物。
七、胆汁的作用
1.胆汁的作用:
胆汁不含消化酶,与消化作用有关的成分是胆盐,胆盐的作用如下:
(1)乳化脂肪,促进脂肪消化。
(2)与脂肪酸结合,促进脂肪酸的吸收。
(3)促进脂溶性维生素的吸收。
(4)利胆作用和中和胃酸。
八、小肠液的作用
1.小肠液的作用
大量的小肠液可稀释消化产物,使其渗透压下降,有利于吸收。
九、胃肠平滑肌的运动形式
1.胃肠道共有的运动形式:
(1)紧张性收缩:是胃肠道其它运动形式的基础。
(2)蠕动:消化道平滑肌顺序收缩而完成的一种向前推进的波形运动。蠕动由动作电位引起,但受基本电节律控制。
2.各消化道特有的运动形式:
(1)胃的容受性舒张:是由神经反射引起的,传入传出神经都为迷走神经,但传出纤维的递质不是ACh而是多肽。
(2)小肠的分布运动:是小肠运动的主要形式。指以小肠环形肌节律性收缩和舒张交替进行的运动。
(3)大肠集团蠕动:是大肠特有的运动,由十二指肠一结肠反射所引起,主要通过内在神经丛的传递引起的。
3.胃的排空及其调节:
食物由胃排入十二指肠的过程称为胃排空。
胃的排空取决于幽门两侧的压力差(直接动力),胃运动产生的胃内压增高是胃排空的动力(原始动力)。
胃排空速度与食物性状和化学组成有关,糖类>蛋白质>脂肪;稀的、流体食物>固体、稠的食物。
影响胃排空的因素:
(1)促进因素:①胃内食物容量;②胃泌素。
(2)抑制因素:①肠胃反射;②肠抑胃素:促胰液素,抑胃肽,胆囊收缩素等。小肠内因素起负反馈调节作用。
十、几种重要物质的重吸收
1.小肠是各种营养物质吸收的主要部位的原因:
(1)绒毛及微绒毛加大吸收面积。
(2)食物停留时间长。
(3)食物已被分解成可被吸收的小分子。
(4)淋巴、血流丰富。
2.糖、脂肪和蛋白质的分解产物大部分在十二指肠和空肠部位吸收,回肠主要是胆盐和维生素B12吸收的部位。
3.一些重要物质的吸收特点:
(1)机体所能利用的铁为Fe2+,因此吸收的铁为Fe2+,而不是Fe3+。
(2)葡萄糖、氨基酸等有机小分子在小肠及肾小管吸收的方式为继发性主动重吸收。
(3)机体能利用的单糖,主要是葡萄糖和半乳糖,通常所说的血糖指的是血中的葡萄糖,因此,单糖的吸收速度应以葡萄糖、半乳糖最快。
(4)中性氨基酸较容易通过极性的细胞膜,因此,吸收比酸性、碱性氨基酸快。
(5)长链脂肪进入血液将增加血流的粘滞性,因此,长链脂肪吸收入淋巴而不是直接进入静脉。而中、短链脂肪酸则直接吸收进入静脉。
肾脏的排泄功能
一、肾脏的功能
1.排泄代谢产物:肾脏是体内最重要的排泄器官,在维持内环境稳定中发挥重要作用。就内环境稳定而言,每天排尿量不应小于500ml,否则将有部分代谢终产物在体内积聚,因此,每昼夜尿量在100~500ml之间,称为少尿,而少于100ml称为无尿。
2.调节水、电解质和酸碱平衡:肾脏对水的调节依赖于抗利尿激素,而调节血Na+,血K+的水平则受醛固酮的影响。
3.内分泌功能:肾脏产生的生物活性物质主要有:肾素、促红细胞生成素、羟化的维生素D3和前列腺素、激肽、血管舒张素等,而抗利尿激素不在肾脏产生。
二、肾脏血液循环特征
1.肾脏血液供应的特点:
(1)两侧肾血流量十分丰富,占心输出量的1/5~1/4,其中90%以上分布在皮质,5%~6%分布在外髓,不足1%分布在内髓,这与肾小球(主要分布在皮质)滤过血液的机能相适应。
(2)肾脏血液经两次毛细血管分支后才汇合成静脉,其中肾小球毛细血管是滤过血液的重要结构,而球后毛细血管内血压较低,有利于肾小管的重吸收作用。
2.肾脏血流的调节
(1)自身调节:动脉血压在80~180mmHg范围内变化时,肾脏血流量维持不变。
(2)神经和体液调节:当全身机能状况发生变化时,肾脏血流主要受神经、体液调节,使肾血流量与全身血液分配的需要相适应。
总之,在通常情况下,在一般的血压变动范围内,肾主要依靠自身调节来保持血流量的相对稳定,在紧急状况下,全身血液将重新分配,通过交感神经及肾上腺素的作用来减少肾血流量,使血液分配到脑、心脏等重要器官。
三、近球小体
由入球小动脉的近球细胞、间质细胞、远曲小管(或髓袢升支粗段)的致密斑组成,近球细胞分泌肾素,致密斑能感受小管液中Na+含量变化,进而调节肾素的释放。
★五、尿液生成的基本过程
1.肾小球的滤过作用生成原尿。
2.肾小管和集合管的重吸收作用。
3.肾小管和集合管的分泌和排泄作用。
★六、影响肾小球滤过的因素
1.有效滤过压——肾小球滤过的动力。
有效滤过压=肾小球毛细血管压-(血浆胶体渗透压+肾小囊内压)
滤过平衡:在血液流经肾小球毛细血管时,由于不断生成滤过液,血液中血浆蛋白浓度会逐渐增加,血浆胶体渗透压也随之升高,有效滤过城市逐渐下降,当有效滤过压降为零时,达到滤过平衡,滤过便停止。
动脉血压在80~180mmHg内变化时,通过自身调节维持肾血流量恒定,因此肾小球毛细血管压也相对恒定。
2.肾小球滤过膜——滤过的结构基础。
滤过膜由肾小球毛细血管内皮细胞、基膜和肾小囊脏层上皮细胞构成。血浆中除大分子蛋白质外,其余成分都可通过滤过膜形成原尿,因此,原尿是血浆的超滤液。
滤过膜的三层结构中,基膜上的空隙较小,对大分子物质起主要屏障作用。物质通过滤过膜的难易决定于分子量和所带电荷,电荷中性分子的通透性取决于分子量的大小,带正荷物质通透性大于带负电荷物质。滤过膜通透性发生变化会导致原尿成分的改变,如出现大分子蛋白质等,而终尿内出现异常物质(如大分子蛋白质)可能病变在肾小球滤过膜,也有可能病变在肾小管、集合管等部位。
滤过分数,肾小球滤过率和肾血浆流量的比值。
3. 肾血浆血流:影响肾小球毛细血管的血浆胶体渗透压。
七、一些重要物质的重吸收
1.小管液中的成分经肾小管上皮细胞重新回到管周血液中去的过程,称为重吸收。
原尿中99%的水,全部葡萄糖、氨基酸、部分电解质被重吸收,尿素部分被重吸收,肌酐完全不被重吸收。
2.大部分物质主要吸收部位在近球小管,有些物质仅在近球小管被重吸收。
3. Na+、K+等阳离子主动重吸收,HCO3-、Cl-等阴离子被动重吸收(Cl-在髓袢升支粗段除外),葡萄糖、氨基酸等有机小分子继发性主动重吸收(与Na+的重吸收相关联),水在近球小管等渗性重吸收,在远曲小管和集合管受抗利尿激素调节。
八、某些物质的分泌和排泄
1.K+的分泌:主要由远曲小管、集合管分泌,K+的分泌依赖于Na+重吸收后形成的管内负电位,分泌方式为Na+-H+交换。
2.H+的分泌:通过Na+-H+交换进行分泌,同时促进管腔中的HCO3-重吸收入血。在远曲小管和集合存在Na+-H+和Na+-K+交换的竞争,因此,机体酸中毒时会引起血K+升高,同样,高血钾可以引起血浆酸度升高。
3.NH3的分泌:肾脏分泌的氨主要是谷氨酰胺脱氨而来。
泌NH3有利于H+分泌,同时促进Na+和HCO3-的重吸收。
从上可以看出,Na+重吸收可促进多种物质的重吸收或排泄,例如K+的排泄、H+的分泌、水的重吸收、Cl-的重吸收、葡萄糖、氨基酸的重吸收等,机制如下:
(1)Na+主动重吸收,形成管内为负,管外为正的电位差,这种电位差促进阴离子(例如Cl-)向管外转移(重吸收),促进阳离子(例如K+)向管内分泌;
(2)葡萄糖、氨基酸的重吸收方式是继发性主动重吸收,必须与Na+同向转运入细胞内,而这种转运依赖Na+主动转运形成的细胞内低Na+。
(3)Na+重吸收促进水的重吸收是由于渗透压变化所致。
而NH3的分泌,HCO3-的重吸收则不依赖Na+重吸收,因为NH3为脂溶性物质,可以自由地通过细胞膜,它扩散的方向决定于细胞两侧的pH值(向pH低侧扩散);HCO3-能与小管液内的H+结合然后分解成H2O、CO2,CO2可以自由通过细胞膜,在细胞内再生成HCO3-后转运入血,因此,不是Na+重吸收,而是分泌H+能促进HCO3-的重吸收和NH3的分泌。
★九、影响终尿生成的因素
1.肾小管中溶质浓度是影响肾小管和集合管重吸收的重要因素。糖尿病患者血糖升高,超过肾糖阈时小管内糖浓度增高,妨碍水分重吸收,形成多尿,这称为渗透性利尿,甘露醇利尿原理也如此。
2.抗利尿激素是调节尿量的重要激素,能增加远曲小管和集合管对水的通透性,使尿量减少。引起抗利尿激素分泌的有效刺激有:血浆晶体渗透压升高,循环血量减少,动脉血压降低,痛刺激等。当大量出汗,严重呕吐或腹泻时,血浆晶体渗透压升高,尿量减少。大量饮水后,血浆晶体渗透压降低,抗利尿激素分泌减少,尿量增多,称为水利尿。
下丘脑病变导致抗利尿激素合成,释放障碍时,出现尿崩症。
3.醛固酮也是调节尿量的重要激素。
(1)生理作用:促进远曲小管对Na+、Cl-、水的重吸收,同时促进K+分泌。
(2)分泌的调节:
①肾素-血管紧张素-醛固酮系统:
循环血量减少分别通过兴奋入球小动脉牵张感受器、致密斑感受器、交感神经,使近球细胞肾素分泌增加,进而导致血管紧张素增加含量增加,刺激醛固酮分泌。醛固酮发挥保钠排钾的作用。
②血K+浓度升高(主要刺激因素)或血Na+浓度降低,均可刺激醛固酮分泌。
4.心钠素,甲状旁腺激素也能影响物质的重吸收。
5.球—管平衡:使尿中排出的溶质和水不致因肾小球滤过率的增减而出现大幅度变动。
十、尿液的浓缩和稀释
肾髓质高渗梯度的存在是尿浓缩的动力,抗利尿激素的作用是浓缩的条件。
1.外髓渗透压梯度主要是由于升支粗段NaCl的主动重吸收形成,在此通过Na+—K+—2Cl-转运系统发挥作用。
2.内髓部渗透压梯度的形成与尿素的再循环和Na+重吸收有关。
3.直小血管有保持髓质高渗梯度稳定的作用,因为组织液进入血管升支的水量超过降支丧失的水量,所以水可随血流返回体循环。
肾脏生成尿是连续不断的过程,而排尿则是间断进行。当尿量增加到400~500ml时,膀胱内压才会超过10cmH2O。
排尿反射的初级中枢在骨髓,传入、传出神经都为盆神经,排尿反射是一正反馈过程。
十二、清除率
清除率指肾在单位时间内完全清除血浆中所含某种物质的血浆毫升数。
测定清除率可了解肾的功能,还可测定肾小球滤过率、肾血流量,并可推测肾小管转运功能
神经系统
一、神经元和神经纤维
1.神经元即神经细胞,是神经系统的基本结构和功能单位。神经元由胞体和突起两部分组成,胞体是神经元代谢和营养的中心,能进行蛋白质的合成;突起分为树突和轴突,树突较短,一个神经元常有多个树突,轴突较长,一个神经元只有一条。胞体和突起主要有接受刺激和传递信息的作用。
2.神经纤维即神经元的轴突,主要生理功能是传导兴奋。神经元传导的兴奋又称神经冲动,是神经纤维上传导的动作电位。神经元轴突始段的兴奋性较高,往往是形成动作电位的部位。
3.神经胶质:主要由胸质细胞构成,在神经组织中起支持、保护和营养作用。
二、神经冲动在神经纤维上传导的特征
1.生理完整性:包括结构和功能的完整,如果神经纤维被切断或被麻醉药作用,则神经冲动不能传导。
2.绝缘性:一条神经干内有许多神经纤维,每条神经纤维上传导的神经冲动互不干扰,表现为传导的绝缘性。
3.双向传导:神经纤维上任何一点产生的动作电位可同时向两端传导,表现为传导的双向性,但在整体情况下是单向传导的。
4.相对不疲劳性:神经冲动的传导以局部电流的方式进行,耗能远小于突触传递。
5.不衰减性:这是动作电位传导的特征。
6.传导速度:与下列因素有关:
(1)与神经纤维直径成正比,速度大约为直径的6倍。
(2)有髓纤维以跳跃式传导冲动,故比无髓纤维传导快。
(3)温度降低传导速度减慢。
★四、神经元之间的信息传递
1.神经元之间联系的基本方式是形成突触,突触由突触前膜、突触间隙和突触后膜构成,突触前膜内侧有大量线粒体和囊泡,不同类型突触所含囊泡的形态、大小及递质均不同。突触后膜上有递质作用的受体。
2.信息传递的基本方式:化学性突触传递,缝隙连接、非突触性化学传递。
(1)化学性突触传递是神经系统内信息传递的主要方式,是一种以释放化学递质为中介的突触性传递。基本过程如下:突触前膜释放递质→突触间隙→与突触后膜受体结合→EPSP或IPSP→突触后神经元兴奋或抑制。
(2)缝隙连接又称电突触,是细胞间直接电联系,结构基础是细胞上的桥状结构。特点:以电扩布,双向性,传导速度快。
意义:使许多神经元产生同步化的活动。
(3)非突触性化学传递:这种传递的结构基础是:传递信息的神经元轴突末梢的分支上有大量曲张体,曲张体内有大量含递质的小泡。传递方式:曲张体释放递质入细胞间隙,通过弥散作用于效应细胞膜上的受体。
传递特点:①不存在突触的特殊结构;②不存在一对一的支配关系,一个曲张体能支配较多的效应细胞;③距离大;④时间长;⑤传递效应取决于效应细胞膜上有无相应的受体;⑥单胺类神经纤维都能进行此类传递,例如交感神经节后肾上腺素能纤维。
★五、兴奋性突触后电位和抑制性突触后电位产生的原理
突触传递类似神经肌肉接头处的信息传递,是一种“电—化学—电”的过程;是突触前膜释放兴奋性或抑制性递质引起突触后膜产生兴奋性突触后电位(EPSP)或抑制性突触后电位(IPSP)的过程。
1.EPSP是突触前膜释放兴奋性递质,作用突触后膜上的受体,引起细胞膜对Na+、K+等离子的通透性增加(主要是Na+),导致Na+内流,出现局部去极化电位。
2.IPSP是突触前膜释放抑制性递质(抑制性中间神经元释放的递质),导致突触后膜主要对Cl-通透性增加,Cl-内流产生局部超极化电位。
特点:(1)突触前膜释放递质是Ca2+内流引发的;(2)递质是以囊泡的形式以出胞作用的方式释放出来的;(3)EPSP和IPSP都是局部电位,而不是动作电位;(4)EPSP和IPSP都是突触后膜离子通透性变化所致,与突触前膜无关。
六、突触传递的特征
1.单向传递。因为只有突触前膜能释放递质,突触后膜有受体。
2.突触延搁。递质经释放、扩散才能作用于受体。
3.总和。神经元聚合式联系是产生空间总和的结构基础。
4.兴奋节律的改变。指传入神经的冲动频率与传出神经的冲动频率不同。因为传出神经元的频率受传入、中枢、传出自身状态三方面综合影响。
5.后发放。原因:神经元之间的环路联系及中间神经元的作用。
6.对内环境变化敏感和易疲劳性。反射弧中突触是最易出现疲劳的部位。
七、神经递质与受体及阻断剂
1.外周神经递质:主要有乙酰胆碱、去甲肾上腺素、嘌呤类或肽类。
不同受体对应的阻断剂:
α受体——酚妥拉明 β受体——心得安
M受体——阿托品 N2受体——箭毒 N1受体——六烃季胺
2.中枢神经递质:包括以下四类:
(1)乙酰胆碱:存在于脊髓前角运动神经元、脑干网状结构上行激动系统、纹状体等部位。
(2)单胺类:包括多巴胺、去甲肾上腺素、5-羟色胺、肾上腺素。例如,多巴胺主要存在于黑质-纹状体、中脑边缘系统等部位。5-羟色胺神经元主要存在于脑干中缝核。
(3)氨基酸类:谷氨酸、天冬氨酸为兴奋性递质,γ-氨基丁酸、甘氨酸为抑制性递质。
(4)神经肽:包括阿片肽、脑-肠肽等。
3.同一个中枢递质对不同的突触后膜有不同的效应,有的呈现兴奋性效应,有的呈现抑制性效应,这种不同主要是由突触后膜的特性决定的。
八、中枢抑制
1.突触后抑制包括传入侧枝性抑制和回返性抑制。
基本过程:神经元兴奋导致抑制性中间神经元释放抑制性递质,作用于突触后膜上特异性受体,产生抑制性突触后电位,从而使突触后神经元出现抑制。
(1)传入侧枝性抑制又称为交互抑制。一个感觉传入纤维进入脊髓后,一方面直接兴奋某一中枢的神经元,另一方面发出其侧枝兴奋另一抑制性中间神经元,然后通过抑制性神经元的活动转而抑制另一中枢的神经元。
意义:使不同中枢之间的活动协调起来。
例子:屈肌反射(同时伸肌舒张)。
(2)回返性抑制:多见信息下传路径。传出信息兴奋抑制性中间神经元后转而抑制原先发放信息的中枢。
意义:使神经元的活动及时终止;使同一中枢内许多神经元的活动协调一致。
例子:脊髓前角运动神经元与闰绍细胞之间的联系。
2.突触前抑制:
通过改变突触前膜的活动,最终使突触后神经元兴奋性降低,从而引起抑制的现象。
结构基础:轴突-轴突突轴。
机制:突触前膜被兴奋性递质去极化,使膜电位绝对值减少,当其发生兴奋时动作电位的幅度减少,释放的递质减少,导致突触后EPSP减少,表现为抑制。
特点:抑制发生的部位是突触前膜,电位为去极化而不是超极化,潜伏期长,持续时间长。
十二、牵张反射
1.有神经支配的骨骼肌,如受到外力牵拉使其伸长时,能引起受牵拉肌肉的收缩,这种现象称为牵张反射。感受器为肌梭,效应器为梭外肌。
牵张反射的基本过程:当肌肉被牵拉导致梭内、外肌被拉长时,引起肌梭兴奋,通过Ⅰ、Ⅱ类纤维将信息传入脊髓,使脊髓前角运动神经元兴奋,通过α纤维和γ纤维导致梭内、外肌收缩。其中α运动神经兴奋使梭外肌收缩以对抗牵张,γ运动神经元兴奋引起梭内肌收缩以维持肌梭兴奋的传入,保证牵张反射的强度。
2.牵张反射有两种类型:腱反射和肌紧张。
(1)腱反射是指快速牵拉肌腱时发生的牵张反射,主要是快肌纤维收缩。腱反射为单突触反射。
(2)肌紧张是指缓慢持续牵拉肌腱时发生的牵张反射,表现为受牵拉的肌肉能发生紧张性收缩,阻止被拉长。
肌紧张是维持躯体姿势的最基本的反射活动,是姿势反射的基础。
肌紧张主要是慢肌纤维收缩,是多突触反射。
3.肌梭和腱器官的异同:
参与反射 位置 传入神经 传出神经 作用 感受器性质
肌梭 牵张反射 梭外肌纤维旁 Ⅰ、Ⅱ类纤维 α纤维到梭外肌, γ纤维到梭内肌 兴奋α神经元 长度感受器
腱器官 腱器官反射 腱胶原纤维之间 Ⅰ类纤维 α纤维到梭外肌 抑制α神经元 张力感受器
十三、植物神经系统对内脏机能的调节
1.植物神经系统的特征:
(1)植物神经节后纤维主要支配腺体、心肌、平滑肌,其活动不受意志的直接控制。
(2)植物神经节后纤维对外周效应器的支配具有持久的紧张作用。
(3)植物神经节后纤维的作用有时与外周效应器的功能状态有关。
(4)植物神经节前纤维释放的递质为乙酰胆碱(ACh),而节后纤维释放的递质为ACh或去甲肾上腺素。
(5)大部分内脏器官受交感神经、副交感神经双重支配,而汗腺仅有以乙酰胆碱为递质的交感节后纤维支配。
(6)交感神经、副交感神经系统功能上相互拮抗、相互协调。
2.交感神经和副交感神经系统的功能:
器官 交感神经 副交感神经
循环系统 心跳加快加强、皮肤及内脏
血管收缩,血压升高 心跳减慢减弱,血压降低
呼吸系统 呼吸道平滑肌舒张 呼吸道平滑肌收缩
消化系统 胃肠平滑肌的活动减弱
括约肌收缩 加强胃肠平滑肌的活动
括约肌舒张
眼 瞳孔扩大 瞳孔缩小
汗腺 分泌增加 不受副交感神经支配
代谢,内分泌 糖原分解,肾上腺髓质分泌增加 胰岛素分泌增加,糖原合成增加
★十四、下丘脑的作用
下丘脑是较高级的调节内脏活动的中枢,调节体温、摄食行为、水平衡、内分泌、情绪反应、生物节律等重要生理过程。
1.体温调节:PO/AH中的温度敏感神经元在体温调节中起着调定点的作用。
2.水平衡调节:下丘脑内存在渗透压感受器调节抗利尿激素的释放。
3.对腺垂体激素分泌的调节。(见内分泌部分)
4.摄食行为调节:下丘脑外侧区存在摄食中枢;腹内侧核存在饱食中枢,故毁损下丘脑外侧区的动物食欲低下。
5.对情绪反应的影响:下丘脑近中线两旁的腹内侧区存在所谓防御反应区。
6.对生物节律的控制:下丘脑的视交叉上核可能是生物节律的控制中心。
内分泌与生殖
一、激素的概念
1.激素是指由内分泌腺和内分泌细胞分泌的高效能生物活性物质。激素对机体生理功能起重要调节作用,但激素既不增加能量,也不增添成分,仅起“信使”作用。
2.激素的作用方式:(1)远距分泌:经血液循环,运送至远距离的靶细胞发挥作用;(2)旁分泌:通过细胞间液直接扩散至邻近细胞发挥作用;(3)神经分泌:神经细胞分泌的激素经垂体门脉至腺垂体发挥作用。(4)自分泌:内分泌细胞所分泌的激素在局部扩散又返回作用于该内分泌细胞而发挥反馈作用的方式。
二、激素的分类和作用原理
1.含氮类激素:包括蛋白质、肽类、胺类。
此类激素相当于“第一信使”,与细胞膜受体结合,激活膜上的腺苷酸环化酶,引起的细胞内第二信使物质如cAMP、Ca2+、cGMP等浓度的变化,从而发挥生理作用。
2.类固醇激素:包括肾上腺皮质激素和性激素。胆固醇的衍生物——1,25-二羟基维生素D3也被作为激素看待。
此类激素可以通过细胞膜,与胞浆受体结合形成激素—胞浆受体复合物,然后进入细胞核内,激素与核内的受体结合,形成激素—核受体复合物,进而启动或抑制DNA的转录过程,从而诱导或减少新蛋白质的生成,发挥特有的生理作用。
三、激素的生理作用
1.通过调节蛋白质、糖、脂肪及水盐代谢,维持机体内环境的稳定。
2.促进细胞的分裂、分化,调节生长、发育、衰老等过程。
3.影响神经系统的发育和活动,与学习、行为、记忆等相关。
4.促进生殖器官的发育和成熟,调节生殖过程。
5.激素作用的一般特性:(1)信息传递作用;(2)相对特异性;(3)高效能生物放大作用;(4)激素间存在协同作用或拮抗作用。
四、下丘脑的内分泌机能
1.内分泌细胞:
神经内分泌大细胞:起自视上核、室旁核,纤维投射到神经垂体,分泌抗利尿激素和催产素。神经内分泌小细胞:分泌各种释放激素或释放抑制激素,经垂体门脉到达腺垂体的各种靶细胞。
2.下丘脑激素的化学本质:都为肽类激素。
3.下丘脑激素分泌的调节
(1)反馈调节:这是主要的调节方式。
包括靶腺激素的长反馈;腺垂体促激素的短反馈;以及下丘脑激素的超短反馈。
(2)脑内神经递质的调节:5-HT、乙酰胆碱,去甲肾上腺素等都发挥调节作用。
4.垂体门脉系统
这是下丘脑与腺垂体功能联系的基础,包括两重毛细血管网,第一级在正中隆起——垂体柄处,第二级在垂体前叶,下丘脑肽类激素通过门脉系统调节腺垂体促激素的释放,而垂体促激素通过门脉系统发挥反馈性调制作用。
五、腺垂体功能
1.腺垂体激素的种类:
腺垂体是体内最重要的内分泌腺,至少分泌七种激素,其中GH、PRL、MSH没有靶腺、分别调节生长、乳腺发育、黑色细胞功能;而TSH、ACTH、FSH、LH通过靶腺发挥作用。
2.生长素的作用和调节:
(1)作用:①促生长作用:幼年时缺乏患侏儒症、过多患巨人症,成年时生长素过多患肢端肥大症。②对代谢的作用:加速蛋白质的合成,促进脂肪分解。生理水平生长素加强葡萄糖的利用,过量生长素则抑制葡萄糖的利用。
除生长素外,促生长作用的激素还有甲状腺素、胰岛素、雄激素等。凡促进合成代谢、加速蛋白质合成的激素均有促生长作用,而促进分解代谢的激素则抑制生长。
(2)分泌的调节:受下丘脑GHRH与生长抑素的双重调节,而代谢因素、睡眠则间接影响其分泌。例如,慢波睡眠、低血糖、血氨基酸增多、脂肪酸增多均可引起生长素分泌增加。
3.催乳素的作用:
(1)引起和维持泌乳:人催乳素刺激妊娠期乳腺生长发育、促进乳汁的合成与分泌并维持泌乳。而刺激女性青春期乳腺发育的激素主要是雌激素,其他激素如生长素、孕激素、甲状腺素等起协同作用。催产素、催乳素是与妊娠、哺乳有关的激素,对青春期乳腺发育无作用。性激素促进副性征的发育,对青春期乳腺发育起重要作用。
(2)对卵巢的作用:小量的PRL对卵巢雌激素与孕激素的合成起允许作用,而大量的PRL则有抑制作用。
(3)在应激反应中的作用:催乳素,ACTH、生长素是应激反应中三大腺垂体激素。
六、神经垂体释放的激素
1.神经垂体激素的来源
下丘脑视上核和室旁核产生的抗利尿激素(或称加压素)和催产素经神经垂体束运输至神经垂体储存和释放。
2.抗利尿激素/血管升压素:主要由视上核产生。
(1)作用:①与肾脏的远曲小管和集合管上皮细胞的特异受体结合,增加水的重吸收,发挥抗利尿作用。②在机体大失血导致血压降低时,与血管平滑肌上特异性受体结合,产生升压作用。
(2)引起抗利尿激素释放的有效刺激:
血浆晶体渗透压升高和循环血量减少等因素,其中最有效的刺激是血浆晶体渗透压升高。
3. 催产素:主要由室旁核产生。
(1)作用:参与射乳反射和收缩子宫,对非孕子宫作用弱对妊娠子宫作用强。以排乳作用为主。
(2)分泌调节:射乳反射,分娩时扩张生殖道、疼痛、以及雌激素作用。
射乳反射是吸吮乳头引起乳汁分泌和排出的反射,这是一种典型的神经内分泌反射。射乳反射的传出信号不是神经冲动而是催产素和催乳素的分泌,分别作用于肌上皮细胞和腺泡细胞导致乳汁的分泌和排出。催产素和催乳素是下丘脑激素,它们的释放由高级中枢调节,因此,射乳反射的中枢是大脑而不是脊髓。孕激素和雌激素通过同催乳素竞争乳腺细胞受体抑制泌乳,这是妊娠期不泌乳的原因。
七、胰岛素
1.胰岛细胞及分泌的激素:
A细胞——分泌胰高血糖素,B细胞——分泌胰岛素,
D细胞——分泌生长素,P细胞——分泌胰多肽。
2.胰岛素生物学作用:促进合成代谢调节血糖稳定的激素。
(1)对糖代谢:加速葡萄糖的摄取、贮存和利用,降低血糖浓度。
(2)对脂肪代谢:促进脂肪的合成,抑制脂肪的分解。
(3)对蛋白质代谢:促进蛋白质的合成和贮存,抑制蛋白质分解。
3.胰岛素分泌的调节
(1)血糖的作用:血糖浓度是调节胰岛素分泌的最重要因素,血糖升高刺激B细胞释放胰岛素,长期高血糖使胰岛素合成增加甚至B细胞增殖。另外,血糖升高还可以作用于下丘脑,通过支配胰岛的迷走神经传出纤维,引起胰岛素分泌。
(2)氨基酸和脂肪的作用:多种血氨基酸能增加刺激胰岛素分泌,其中以赖氨酸、精氨酸、亮氨酸作用最强。脂肪酸有较弱的刺激胰岛素分泌的作用。
(3)激素的作用:①胃泌素、促胰液素、胆囊收缩素、抑胃肽等胃肠激素能促进胰岛素分泌,这是口服比静脉注射葡萄糖更易引进胰岛素分泌的原因。②生长素、雌激素、孕酮促进胰岛素分泌,而肾上腺素抑制胰岛素分泌。③胰高血糖素可通过对胰岛B细胞的直接作用和升高血糖的间接作用,引起胰岛素分泌。
(4)神经调节:刺激迷走神经,可通过乙酰胆碱作用于M受体,直接促进胰岛素的分泌;迷走神经还可通过刺激胃肠激素的释放,间接促进胰岛素的分泌。交感神经兴奋时,则通过去甲肾上腺素作用于α2受体,抑制胰岛素分泌。
八、甲状腺激素
甲状腺激素包括三碘甲状腺原氨酸(T3)和四碘甲状腺原氨酸(T4);甲状腺合成、释放的T4多于T3,因此血中T4浓度高于T3,但T3的效应强于T4,T3主要由T4脱碘而来。T3、T4进入核内与特异性受体结合从而影响基因表达。
1.甲状腺激素的生物学作用
(1)对生长发育的作用:影响长骨和中枢神经的发育,婴幼儿缺乏甲状腺激素患呆小病。
(2)对机体代谢的影响:
①提高基础代谢率,增加产热量。
②对三大营养物质的代谢既有合成作用又有分解作用,剂量大时主要表现出分解作用。甲状腺机能低下时蛋白质合成水平低下会出现粘液性水肿。
③提高中枢神经系统及交感神经兴奋性,故甲亢患者表现为易激动、烦躁不安、多言等症状。
(3)对心血管系统的作用:使心率增快,心缩力增强。
2.甲状腺激素分泌的调节:
(1)下丘脑-腺垂体-甲状腺轴的作用:
①下丘脑对腺垂体的调节:下丘脑分泌的TRH对腺垂体起经常的调节作用,可促进腺垂体合成和释放促甲状腺激素(TSH);而下丘脑分泌的生长抑素则抑制TSH的合成和释放。②腺垂体对甲状腺的调节:TSH是促进T3、T4合成、分泌最主要的激素,作用于下列环节影响甲状腺激素的合成:促进碘泵活动,增加碘的摄取;促进碘的活化;促进酪氨酸碘化;促进甲状腺球蛋白水解和T4释放;促进甲状腺增殖。③甲状腺激素的负反馈调节:腺垂体对血中T3、T4变化十分敏感,血中T3、T4浓度升高,可引起TSH合成、分泌减少。
(2)甲状腺自身调节:
摄入碘量高抑制甲状腺激素释放,摄入碘量少则代偿性甲状腺激素释放增多,长期缺碘发生地方性甲状腺肿。
(3)神经系统的调节:交感神经促进T3、T4合成、释放,副交感神经抑制T3、T4合成、释放。
九、肾上腺皮质激素
1.三类激素:球状带——盐皮质激素(醛固酮)。
束状带——糖皮质激素(皮质醇)。
网状带——性激素(雄激素、雌激素)。
这三类激素属于类固醇激素,合成场所在线粒体、原料为胆固醇。皮质激素与细胞核内受体结合影响基因表达从而发挥调节作用。
2.糖皮质激素的作用:
(1)对物质代谢的影响:糖皮质激素是促进分解代谢的激素,促进糖异升,升高血糖促进蛋白质分解。有抗胰岛素作用使血糖升高,对脂肪的作用存在部位差异。
(2)对水盐代谢的影响:对水的排出有促进作用,有较弱的贮钠排钾作用。
(3)在应激中发挥作用。
(4)维持血管对儿茶酚胺的敏感性——允许作用。
(5)使红细胞、血小板、中性粒细胞在血液中的数目增加,使淋巴细胞、嗜酸粒细胞减少。
(6)其它:抗休克、抗炎、抗过敏、抗毒提高中枢神经兴奋性等。
3.糖皮质激素分泌的调节:
受下丘脑-腺垂体-肾上腺皮质轴的调节,存在靶腺激素的长反馈,ACTH对CRH分泌的短反馈调节。
十、甲状旁腺激素
由甲状旁腺的主细胞分泌,作用于细胞外受体,以cAMP为第二信使。甲状旁腺激素主要作用是维持血钙浓度稳定于正常水平,作用的靶器官主要是骨骼和肾脏。在肾脏促进远曲小管对Ca2+的重吸收,抑制近球小管对磷酸盐的重吸收。在骨骼能促进骨钙重吸收,将钙释放于血液,同时抑制新骨的生成。PTH能迅速提高骨细胞膜对Ca2+的通透性,使骨液中的Ca2+进入细胞内,进而使骨细胞膜上的钙泵活动增强,将Ca2+转运到细胞外液中。甲状旁腺激素的分泌主要受血离子态钙浓度的调节。
其它调节钙代谢的激素还有1,25-(OH)2-D3和降钙素。1,25-(OH)2-D3除作用于骨骼和肾脏外,还能促进小肠吸收Ca2+。甲状旁腺激素虽不作用于小肠,但可促进1,25-(OH)2-D3的形成,故能间接促进小肠吸收Ca2+。
十一、雌激素对代谢的影响
1.保钠保水,使细胞外液量增加。
2.促进肌肉蛋白质合成。
3.加强钙盐沉着,对青春期发育与成长起促进作用。
十二、睾丸酮的生理作用:
1.促进睾丸曲细精管的发育和精子的成熟;
2.促进男性附属性器官的发育并维持其功能;
3.促进蛋白质合成,促进骨骼生长与钙磷沉积;
4.促进红细胞生成。
十三、前列腺素的生理作用
1.由血管内膜产生的PGI2能抑制血小板聚集,并有舒张血管的作用。
2.PGE2可使支气管平滑肌舒张,降低肺通气阻力,而PGE2α使,支气管平滑肌收缩。
3.PGE2有明显的抑制胃酸分泌作用,可增加肾血流量,促进排钠利尿。
4.PG对体温调节,神经系统、内分泌及生殖活动均有影响。
点击加载更多评论>>