- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
例1:有7个不同的质数,他们的和是58,其中最小的质数是多少?
A.2 B.3 C.5 D.7
解析:7个不同的质数相加,和为偶数,而质数除了2其余全为奇数,成对出现和一定为偶数,剩下一个也一定为偶数,又要是质数,所以只能是2。
上面这个题目中不仅考察了奇偶性,同时应用了质合数的相关概念。
除此之外,质合数的应用也很重要,尤其是分解质因数的应用。
3、 分解质因数
(1)将一个合数分解成几个质数相乘的形式。
(任何一个合数都可以写成几个质数相乘的形式)
也就是分解质因数我们可以采用短除法的做法,通过一道具体的例题来看一下。
例2:对360进行因式分解,并求出正约数的个数。
解析:
,即360的正约数的个数有(3+1)*(2+1)*(1+1)=24,对于这类相对较大的合数要求其正约数的个数我们可以采用此类方法。
责编:杨丽梅
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>