当前位置:首页 > 全部子站 > 解放军文职 > 解放军文职专业 > 数学1

解放军文职招聘考试微积分的准备工作

来源:长理培训发布时间:2017-11-22 19:34:00

 微积分的准备工作

  众所周知,微积分是牛顿(INewton 16431727)和莱布尼茨(GWLeibniz 16461716)创立的.但如果把人类文明史上这一伟大成果仅仅归功于他们二人,就有失公允了.正如牛顿所说:“我所以有这样的成就,是因为我站在巨人们的肩上.”仅就发明微积分而言,属于他所谓“巨人”之列的,至少可以举出斯蒂文(SStevin 15481620)、开普勒(JKepler15711630)、伽利略(GGalilei15641642)、卡瓦列里(BCavalieri15981647)、费马(Pde Fermat16011665)、帕斯卡(BPascal 16231662)、沃利斯(JWallis16161703)、巴罗(IBarrow16301677)等光辉的名字.如果追根溯源,作为微积分基础的极限思想,甚至与古希腊的阿基米德(Archimedes)及中国三国时代的刘徽相联系,他们各自在自己的国土上,提出了计算圆周率的科学方法——割圆术,从而跨入极限领域.当然,微积分的直接准备工作还是从16世纪开始的,体现在微分和求积两个方面.

一、求积理论的发展

  在16世纪,积分思想是围绕求积问题发展的,而计算物体重心是与求积有关的一个重要问题.微积分的先驱之一——斯蒂文,首先在这方面有了突破.他在1586年出版的《平衡的原理》(De Beghinselen der weeghconst)一书中,用极限思想证明了三角形的重心落在中线上.

 

  如图111AD是△ABC的一条中线.斯蒂文在△ABC内作一系列平行四边形,根据阿基米德证明过的对称原理,内接图形的重心应在中线上.当平行四边形的个数无限增加时,内接图形便无限接近△ABC,假定△ABD与△ACD的“重量”不等,其差必为一常数.当平行四边形的个数增加到某一数值时,必使内接图形与△ABC的差小于任意给定常数,从而使△ABD与△ACD之差小于所给常数.这就证明了△ABD与△ACD“重量”相等,即△ABC的重心落在中线上.显然,斯蒂文把三角形看成平行四边形和的极限,其中蕴含着积分思想的萌芽.

  开普勒进一步发展了求积中的极限方法,他把球看成是由无穷多个棱锥组成的,每个棱锥的顶点都在球心,底面在球的表面上,高等于球半径r.把这些棱锥的体积加起来,由棱锥体积公式立即得到

  

  开普勒的这一杰出思想,还体现在1615年发表的《测定酒桶体积的新方法》(Nova Stereometria doliorum vinariorum)一书中.据说他对求积问题的兴趣,起源于对啤酒商的酒桶体积的怀疑.他在该书中讨论了许多旋转体的体积,其基本思想是化曲为直,即把曲线形看作边数无限多的直线形.例如,他把圆看作边数为无限的多边形,因此圆面积等于无穷多个等腰三角形面积之和,这些三角形的顶点在圆心,底在圆上,而高为半径r.显然,圆面积等于圆周长与半径的乘积之半.他对球体积公式的推导就是在此基础上发展而来的,著名的开普勒行星三定律中的第二定律——由太阳到行星的向径扫过的面积与经过的时间成正比,其推导过程也应用了这种求积方法.用无穷多个同维的无限小元素之和来确定曲边形面积和体积,这是开普勒求积术的核心,是他对积分学的最大贡献.他的许多后继者都吸取了这一精华.

  在《两种新科学》(全名是《关于两种新科学的论述与数学证明》,Discourses and Mathematical Demonstrations Concerning Two New Sciences1634)一书中,伽利略的求积方法与开普勒一脉相承.在处理匀加速运动问题时,他证明了在时间一速度曲线下的面积就是距离.如图112,假定物体以变速v=32t运动,则在时间OA内通过的距离就是面积OAB.伽利略所以得到这个结论,是因为他不仅把AB′当作某个时刻的速度,而且把AB′当作无穷小距离(即把AB′看作速度与无穷短时间之积).他认为由动直线AB′组成的面积OAB必定是总的距离.因为AB32tOAt,所以OAB的面积为16t2,即在时间t内走过的距离为16t2.结论显然是正确的,但推理不够严格.

 

  系统运用无限小元素来计算面积和体积,是通过伽利略的学生卡瓦列里实现的.从1635年发表的《不可分连续量的几何学》(Geometria Indivisibilibus Continuorum Nova Quadam Ratione Promota)一书可以看出,他不仅继承了开普勒与伽利略的思想,而且有明显的变革.第一,他不再把几何图形看作同维无穷小元素所组成,而是看作由维数较低的无穷小元素所组成,并把这些无穷小元素称为“不可分量”.例如,体积的不可分量是无数个平行的平面.第二,他建立起两个给定几何图形的不可分量之间的一一对应关系,若每对量的比都等于同一个常数,则他断定两个图形的面积或体积也具有同样比例.所谓卡瓦列里原理便是在此基础上提出的,下面,我们以他对球体积的推导为例,说明他是怎样通过不可分量的比较来求积的.

 

  如图113,设DHC是以O为圆心的半圆,ABCD是它的外切矩形.以OH为旋转轴,则正方形OHBC画出圆柱,三角形OHB画出圆锥,而弧HC画出半球面.用平行于底面的任意平面去截这些图形,则产生以G为圆心的半径分别为RGFGEG的圆,它们分别为圆柱、圆锥和半球的不可分量,这些不可分量存在如下关系:

OE2=GO2EG2

  即 RG2FG2+EG2

  所以 πRG2=πFG2+πEG2

  由于截面的任意性,所以圆柱体积等于半球与圆锥体积之和,设球半径为r,则

  

  大约在1636年,费马提出一种新的求积方法.他吸收了开普勒的同维无限小元素思想,又保留了卡瓦列里不可分量法在求积问题上的有效 

  坐标为a,αa,α2a…的点(比例常数α<1),然后在这些点上作纵坐标,于是整个图形被分割成无数个小矩形(114),这些矩形的底边分别为

 

  (1-α)a,α(1-α)a

  α2(1-α)a

    

  于是,各矩形面积构成一个几何级数:

  为使矩形和充分接近抛物线所围面积,须将矩形的宽无限缩小,即令α→1.为此,费马先令α=βq,则

  

  若α→1,则β→1,上式分子为q1之和而分母为pq1之和,

  

  显然,在费马辛勤耕耘的数学园地里,已经看得见定积分的曙光了.费马的思想与定积分的差距仅仅在于:第一,尚未抽象出定积分的概念;第二,还未建立一般的积分公式.

  与费马相比,帕斯卡的求积方法更为有效,因为他采取了略去无穷序列之和的高次项的方法(1654),这种思想对莱布尼茨和牛顿有很大影响.例如,帕斯卡在计算以曲线y=x2为一边的曲边三角形面积时,把由曲线yx2x轴和直线xa围成图形的底分成n等分,于是得到n个矩形(115),他称这些矩形为“无穷小矩形”,用它们取

  d·d2+d·(2d)2+d·(3d)2+…+ d(nd)2

 

 

    

法证明了由一般曲线yxnx轴和直线xa所围成的曲边梯形面积 

  在牛顿和莱布尼茨之前,为发明微积分作准备工作最多的是英国的沃利斯.他的《无限算术》(Arithmetica Infinitorium1655)一书,把不可分量法译成了数的语言,从而把几何方法算术化.他把几何中的极限方法转移到数的世界,首次引入变量极限的概念,他说:“变量的极限——这是变量所能如此逼近的一个常数,使得它们之间的差能够小于任何给定的量.”他使无限的概念以解析形式出现在数学中,从而把有限算术变成无限算术,为微积分的确立准备了必要的条件.牛顿便曾直接得益于《无穷算术》.我们从下面的例子可以清楚地看出沃利斯的思想特点.

  在求曲线yxn下的面积时,沃利斯不是直接去求,而是考虑该面积与横轴及过端点的纵线为边而成的矩形OABC(116)之比,即

  

 

  把横轴从0a分为m等分,则曲线y=xn下的面积近似为:

0n+1n+2n+…+an

  而与此相比较的矩形面积为

an+an+an+……+an

  它们的比为

  

  当m→∞时,上式的极限便是曲线下的面积与矩形面积之比.

  沃利斯分别考虑了n123456的情况.当n2时,有

  

任意给定的量.”如果项数趋于无限,则这个差将“趋于消失”,因此

 

  显然,沃利斯已经接近现代意义的定积分了.

责编:刘卓

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部