- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
1.不等式
根据题干中的不等关系(大于、小于、大于等于、小于等于)列出不等式,然后求出未知量的取值范围,这是不等式在数学运算中的典型运用。
【举例说明】甲、乙共有100个苹果,已知乙的苹果数小于甲的苹果数的1/4,问乙最多有多少个苹果?
问乙则设乙,设乙有x个,则甲有(100-x),得x<1/4(100-x),得x<20,x为整数,则乙最多有19个苹果。
点评:解不等式的方法与解方程类似,但要注意,当不等号两边同时乘以(或除以)同一个负数时,要改变不等号的方向。如-3x<12,不等号两边同时除以-3,得到x>-4。
2.均值不等式
两个正数的算术平均数不小于它们的几何平均数,即,当且仅当a=b时,等号成立。不等号左边是两个数的算术平均数,右边是几何平均数,这个不等式就称为均值不等式。由均值不等式,可以得到两个常用结论。
(1)两个正数,当它们的和是一个确定的数的时候,它们相等时乘积最大。例如:a+b=10,则当a=b=5时,ab=25为最大。
复杂一点的情况如下:已知3a+2b=10,求ab的最大值?当3a=2b时,ab取得最大值。
(2)两个正数,当它们的积是一个确定的数的时候,它们相等时和最小。例如:a+b=100,则当a=b=10时,a+b=20为最小。
复杂一点的情况如下:已知ab=100,求a4b的最小值?当a=4b时,a+4b取得最小值。
【举例说明】
已知,要求x⊕y=2x+3y的最小值,利用结论,,当2x=3y=6时2x+3y取最小值,则x⊕y=2x+3y=12。
责编:刘曦
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>