位置:首页 > 高考

2016四川高考理科数学真题及答案

2020-06-29发布者:郝悦皓大小:1.75 MB 下载:0

2016四川高考理科数学真题及答案 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题). 第Ⅰ卷1至2页,第Ⅱ卷3至4页, 共4页,满分150分,考试时间120分钟. 考生作答时,须将答案答在答题卡上,在本试题 卷、草稿上答题无效. 考试结束后,将本试题卷和答题卡一并交回. 第Ⅰ卷(选择题 共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有 一个是符合题目要求的. 1. 设集合 A {x |  2  x 2} ,Z为整数集,则集合 A  Z 中元素的个数是( A.3 2. B.4 C.5 6 4 ( x  i) 设 i 为虚数单位,则 的展开式中含 x 的项为( A.  15x 3. 4. 5. 4 B. 15x 7. C.  20ix D.6 ) 4 D. 20ix 4 π  为了得到函数 y sin  2 x   的图象,只需把函数 的图象上所有的点( y sin 2 x 3  A.向左平行移动 π 个单位长度 3 B.向右平行移动 π 个单位长度 3 C.向左平行移动 π 个单位长度 6 D.向右平行移动 π 个单位长度 6 ) 用数字1,2,3,4,5构成没有重复数字的五位数,其中奇数的个数为( ) A.24 B.48 C.60 D.72 某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金 130万元,在此基础上,每年投入的研发资金比上一年增长 12%,则该公司全年投入 的研发资金开始超过200万元的年份是( ) (参考数据: lg1.12 0.05 , lg1.3 0.11 , lg 2 0.30 ) A.2018年 6. 4 ) B.2019年 C.2020年 秦九韶是我国南宋时期的数学家,普州(现四川省安岳 县)人,他在所著的《数书九章》中提出的多项式求值的 秦九韶算法,至今仍是比较先进的算法,如图所示的程序 框图给出了利用秦九韶算法求某多项式值的一个实例。若 输入n,x的值分别为3,2. 则输出v的值为( ) A.9 B.18 C.20 D.35 2 2 设p:实数 x,y满足 ( x  1)  ( y  1) 2 ,q:实数x,y  y  x  1,  满足  y 1  x, 则p是q的(  y 1,  A.必要不充分条件 C.充要条件 件 ) B.充分不必要条件 D.既不充分也不必要条 D.2021年 8. 2 设O为坐标原点,P是以F为焦点的抛物线 y 2 px( p  0) 上任意一点,M是线段PF上 的点,且 | PM |2 | MF | ,则直线OM斜率的最大值为( A. 9. 3 3 B. 2 3 C. ) 2 2 D.1  ln x, 0  x  1, 设直线 , 分别是函数 f ( x)  图象上点 , 处的切线, 与 垂 l1 l2 P1 P2 l1 l2 ln x, x  1, 直相交于点P,且 l1 , l2 分别与y轴相交于点A,B,则 △ PAB 的面积的取值范围是( ) A.  0,1 D. (1,  )   10. 在 平 面 内 , 定 点 A , B , C , D 满 足 | DA | = | DB | = | DC | ,           2 ,动点P,M满足 | AP | =1 , ,则 | BM | 的 DA DB DB DC DC DA  2 PM MC 最大值是( 43 A. 4 B. (0, 2) C. (0,  )  ) B. 49 4 C. 37  6 3 4 D. 37  2 33 4 第Ⅱ卷 (非选择题 共100分) 二、填空题:本大题共5小题,每小题5分,共25分. 2 11. cos π π  sin 2 = __________. 8 8 12. 同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功, 则在2次试验中成功次数X的均值是__________. 13. 已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该 三棱锥的体积是__________. x 14. 已知函数 f ( x) 是定义在R上的周期为2的奇函数,当 0  x  1 时, f ( x) 4 ,  5 则 f     f (1) __________.  2 15. 在 平 面 直 角 坐 标 系 中 , 当 P( x, y ) 不 是 原 点 时 , 定 义 P 的 “ 伴 随 点 ” 为  y x  P ' 2 , 2  ;当 是原点时,定义 的“伴随点”为它自身,平面曲线 上所 2 x  y x  y2   C P P 有点的“伴随点”所构成的曲线 C ' 定义为曲线 C 的“伴随曲线”,现有下列命题: ① 若点 A 的“伴随点”是点 A ' ,则点 A ' 的“伴随点”是点A; ② 单位圆的“伴随曲线”是它自身; ③ 若曲线 C 关于 x 轴对称,则其“伴随曲线” C ' 关于 y 轴对称; ④ 一条直线的“伴随曲线”是一条直线. 其中的真命题是__________(写出所有真命题的序号). 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或步骤. 16. (本小题满分12分) 我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活 用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超 过x的部分按平价收费,超出x的部分按议价收费. 为了了解居民用水情况,通过抽样, 获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0, 0.5) , [0.5, 1) , …, [4, 4.5) 分成9组,制成了如图所示的频率分布直方图. (I)求直方图中a的值; (II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (III)若该市政府希望使85%的居民每月均用水量不超过标准x(吨),估计x的值, 并说明理由. 频率 组距 0.52 0.40 a 0.16 0.12 0.08 0.04 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量(吨) 17. (本小题满分12分) 在 △ ABC 中,角A,B,C所对的边分别是a,b,c,且 cos A cos B sin C   . a b c (I)证明: sin A sin B sin C ; 6 2 2 2 (II)若 b  c  a  bc ,求 . tan B 5 18. (本小题满分12分) 如图,在四棱锥 P  ABCD 中, AD / / BC , ADC PAB 90 E为棱AD的中点,异面直线PA与CD所成的角为 90 . (I)在平面PAB内找一点M,使得直线 CM / / 平面PBE, P 并说明理由; (II)若二面角 P  CD  A 的大小为 45 ,求直线PA与 平面PCE所成角的正弦值. 1 , BC CD  AD , 2 B A E C D 19. (本小题满分12分) 已知数列 {an } 的首项为 1, Sn 为数列 {an } 的前n项和, Sn 1 qSn  1 ,其中 q  0 , n  N* . (I)若 2a2 , a3 , a2  2 成等差数列,求 an 的通项公式; y2 2 5 4n  3n (II)设双曲线 x  a 2 1 的离心率为 ,且 e2  ,证明: e1  e2   en  n  1 . en n 3 3 20. (本小题满分13分) x2 y 2 已知椭圆 E : 2  2 1(a  b  0) 的两个焦点与短轴的一个端点是直角三角形的3个顶 a b 点,直线 l : y  x  3 与椭圆E有且只有一个公共点T. (I)求椭圆E的方程及点T的坐标; (II)设O是坐标原点,直线 l ' 平行于OT,与椭圆E交于不同的两点A、B,且与直线 2 l交于点P. 证明:存在常数  ,使得 | PT |  | PA | | PB | ,并求  的值. 21. (本小题满分14分) 2 设函数 f ( x) ax  a  ln x ,其中 a  R . (I)讨论 f ( x) 的单调性; (II)确定a的所有可能取值,使得 f ( x)  ( e 2.718 …为自然对数的底数). 1 1 x  e 在区间 (1, +) 内恒成立 x 2016四川省高考理科数学试题解析 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题). 第Ⅰ卷1至2页,第Ⅱ卷3至4页, 共4页,满分150分,考试时间120分钟. 考生作答时,须将答案答在答题卡上,在本试题 卷、草稿上答题无效. 考试结束后,将本试题卷和答题卡一并交回. 第Ⅰ卷(选择题 共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有 一个是符合题目要求的. 1. 设集合 A {x |  2  x 2} ,Z为整数集,则集合 A  Z 中元素的个数是( A.3 B.4 C.5 【答案】C 【解析】由题可知, A  Z { 2,  1, 0,1, 2} ,则 A  Z 中元素的个数为5 选C 2. 6 设 i 为虚数单位,则 ( x  i) 的展开式中含 x 4 的项为( 4 A.  15x B. 15x 【答案】A 【解析】由题可知, 2 4 2 4 含 x 4 的项为 C6 x i  15 x 4 C.  20ix ) D.6 ) 4 D. 20ix 4 选A 3. π  为了得到函数 y sin  2 x   的图象,只需把函数 的图象上所有的点( y sin 2 x 3  A.向左平行移动 π 个单位长度 3 B.向右平行移动 π 个单位长度 3 C.向左平行移动 π 个单位长度 6 D.向右平行移动 π 个单位长度 6 【答案】D 【解析】由题可知, π   π    y sin  2 x   sin  2  x    ,则只需把 的图象向右平移 个单位 3 6 y sin 2 x      6 选D 用数字1,2,3,4,5构成没有重复数字的五位数,其中奇数的个数为( ) A.24 B.48 C.60 D.72 【答案】D 【解析】由题可知,五位数要为奇数,则个位数只能是1,3,5; 1 分为两步:先从1,3,5三个数中选一个作为个位数有 C3 , 4. 4 1 4 再将剩下的4个数字排列得到 A 4 ,则满足条件的五位数有 C3 A 4 72 . 选D )
温馨提示:当前文档最多只能预览 8 页,此文档共16 页,请下载原文档以浏览全部内容。如果当前文档预览出现乱码或未能正常浏览,请先下载原文档进行浏览。
发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

下载需知:

1 该文档不包含其他附件(如表格、图纸),本站只保证下载后内容跟在线阅读一样,不确保内容完整性,请务必认真阅读

2 除PDF格式下载后需转换成word才能编辑,其他下载后均可以随意编辑修改

3 有的标题标有”最新”、多篇,实质内容并不相符,下载内容以在线阅读为准,请认真阅读全文再下载

4 该文档为会员上传,版权归上传者负责解释,如若侵犯你的隐私或权利,请联系客服投诉

返回顶部