有颜色不同的四盏灯,每次使用一盏、两盏、三盏或四盏,并按一定的次序挂在灯杆上表示信号,问共可表示多少种不同的信号?( )
发布时间:2020-11-13
A.24种
B.48种
C.64种
D.72种
试卷相关题目
- 1有面积为1米2、4米2、9米2、16米2的正方形地毯各10块,现有面积为25平方米的正方形房间需用以上地毯来铺设,要求地毯互不重叠且刚好铺满。问最少需几块地毯?( )
A.6块
B.8块
C.10块
D.12块
开始考试点击查看答案 - 2现有A、B、C三桶油,先把A桶的13倒入B桶,再把B桶的14倒入C桶,最后把C桶的110倒入A桶,经这样操作后,三桶油各为90升。问A桶原来有油多少升?( )
A.90升
B.96升
C.105升
D.120升
开始考试点击查看答案 - 3
如右图所示,在△ABC中,已知AB=AC,AM=AN,∠BAN=30°,∠MNC的度数是多少?( )
A.15°
B.20°
C.25°
D.30°
开始考试点击查看答案 - 4一个边长为1的正方形木板,锯掉四个角使其变成正八边形,那么正八边形的边长是多少?( )
A.12
B.22
C.2-
D. -1
开始考试点击查看答案 - 5在自然数1至50中,将所有不能被3除尽的数相加,所得的和是( )。
A.865
B.866
C.867
D.868
开始考试点击查看答案 - 6
如图所示,在3×3方格表的空格内填入恰当的数后,可使每行、每列以及两条对角线上的三个数的和都相等。问方格表内“x”的值是多少?( )
A.2
B.9
C.14
D.27
开始考试点击查看答案 - 7甲、乙两人沿直线从A地步行至B地,丙从B地步行至A地。已知甲、乙、丙三人同时出发,甲和丙相遇后5分钟,乙与丙相遇。如果甲、乙、丙三人的速度分别为85米/分钟、75米/分钟、65米/分钟。问AB两地的距离为多少米?( )
A.8000米
B.8500米
C.10000米
D.10500米
开始考试点击查看答案 - 8有A、B两个电脑显示器,已知旧显示器A的宽与高的比例是4∶3,新显示器B的宽与高的比例是16∶9,如果两个显示器的面积相同,问B的宽度与A的宽度之比是( )。
A.3∶1
B.3∶6
C.2:
D.4∶3
开始考试点击查看答案 - 9若商品的进货价降低8%,而售出价不变,那么利润(按进货价而定)可由目前的p%增加到(p+10)%。问p的值是( )。
A.20
B.15
C.10
D.5
开始考试点击查看答案 - 10
如图所示,梯形ABDC的两条对角线AD、BC相交于O,EF平行于两条边且过O点。现已知AB=6,CD=18,问EF的长度为多少?( )
A.8.5
B.9
C.9.5
D.10
开始考试点击查看答案