某学校开设10门选修课程,其中3门是技能类课程,2门是理论类课程.学校规定每位学生应选修4门,且技能类课程和理论类课程每类至多选修1门,则不同的选修方法种数是( )
发布时间:2021-07-12
A.50
B.100
C.11O
D.115
试卷相关题目
- 1用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共( )
A.24个
B.30个
C.40个
D.60个
开始考试点击查看答案 - 2集合A,B的并集A∪B={a1,a2,a3},当A≠B时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数是( )
A.8
B.9
C.26
D.27
开始考试点击查看答案 - 3将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其在盒子的标号不一致的放入方法种数为( )
A.120
B.240
C.360
D.720
开始考试点击查看答案 - 44位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得﹣100分;选乙题答对得90分,答错得﹣90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是
A.48
B.36
C.24
D.18
开始考试点击查看答案 - 5从单词“equation”选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有( )
A.120个
B.480个
C.720个
D.840个
开始考试点击查看答案 - 6有甲、乙、丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )
A.1260
B.2025
C.2520
D.5040
开始考试点击查看答案 - 75名同学去听同时进行的4个课外知识讲座,每名同学可自由选择听其中的1个讲座,不同选法的种数是( )
A.54
B.45
C.5×4×3×2
D.5×4×3×24!
开始考试点击查看答案 - 88名学生和2位第师站成一排合影,2位老师不相邻的排法种数为( )
A.A88A92
B.A88C92
C.A88A72
D.A88C72
开始考试点击查看答案 - 9A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有( )
A.24种
B.60种
C.90种
D.120种
开始考试点击查看答案 - 1018×17×16×…×9×8=( )
A.A1811
B.A1810
C.A189
D.A188
开始考试点击查看答案