位置:首页 > 题库频道 > 学历类 > 升学考试 > 高中(高考) > 数学(文科) > 高中数学代数与函数一其他练习题21

证明 http://picflow.koolearn.com/upload/papers/20140823/201408232219409271350.png时,假设当 http://picflow.koolearn.com/upload/papers/20140823/20140823221940942412.png时成立,则当 http://picflow.koolearn.com/upload/papers/20140823/20140823221940958297.pnghttp://picflow.koolearn.com/upload/papers/20140823/20140823221940989384.png时,左边增加的项数为(    )

发布时间:2021-07-12

A.http://picflow.koolearn.com/upload/papers/20140823/20140823221941005206.png

B.http://picflow.koolearn.com/upload/papers/20140823/20140823221941020291.pnghttp://picflow.koolearn.com/upload/papers/20140823/20140823221941036169.png

C.http://picflow.koolearn.com/upload/papers/20140823/20140823221941067312.png

D.http://picflow.koolearn.com/upload/papers/20140823/20140823221941098367.png

试卷相关题目

  • 1已知f(n)=(2n+7)·3 n+9,存在自然数m,使得对任意n∈N *,f(n)都能被m整除,则m的最大值为(  )

    A.18

    B.36

    C.48

    D.54

    开始考试点击查看答案
  • 2下面四个判断中,正确的是(  )

    A.式子1+k+k2+…+kn(n∈N*)中,当n=1时式子值为1

    B.式子1+k+k2+…+kn-1(n∈N*)中,当n=1时式子值为1+k

    C.式子1+http://picflow.koolearn.com/upload/papers/20140824/20140824044642004478.png+…+http://picflow.koolearn.com/upload/papers/20140824/20140824044642020496.png(n∈N*)中,当n=1时式子值为1+http://picflow.koolearn.com/upload/papers/20140824/20140824044642004478.png

    D.设f(x)=http://picflow.koolearn.com/upload/papers/20140824/20140824044642067774.png(n∈N*),则f(k+1)=f(k)+http://picflow.koolearn.com/upload/papers/20140824/20140824044642082854.png

    开始考试点击查看答案
  • 3观察式子: http://picflow.koolearn.com/upload/papers/20140823/20140823213453292628.pnghttp://picflow.koolearn.com/upload/papers/20140823/20140823213453307705.pnghttp://picflow.koolearn.com/upload/papers/20140823/20140823213453339819.png ……可归纳出式子为(  )。

    A.http://picflow.koolearn.com/upload/papers/20140823/20140823213453370958.png

    B.http://picflow.koolearn.com/upload/papers/20140823/20140823213453385967.png

    C.http://picflow.koolearn.com/upload/papers/20140823/201408232134534011004.png

    D.http://picflow.koolearn.com/upload/papers/20140823/201408232134534171049.png

    开始考试点击查看答案
  • 4用数学归纳法证明:1+ http://picflow.koolearn.com/upload/papers/20140823/20140823223533839336.png+ http://picflow.koolearn.com/upload/papers/20140823/20140823223533855325.png+ http://picflow.koolearn.com/upload/papers/20140823/201408232235338701083.png时,在第二步证明从n=k到n=k+1成立时,左边增加的项数是(   )

    A.http://picflow.koolearn.com/upload/papers/20140823/20140823223533886366.png

    B.http://picflow.koolearn.com/upload/papers/20140823/20140823223533901412.pnghttp://picflow.koolearn.com/upload/papers/20140823/20140823223533917168.png

    C.http://picflow.koolearn.com/upload/papers/20140823/20140823223533933391.png

    D.http://picflow.koolearn.com/upload/papers/20140823/20140823223533948420.png

    开始考试点击查看答案
  • 5利用数学归纳法证明“1+a+a 2+…+a n +1 = http://picflow.koolearn.com/upload/papers/20140823/20140823213213657564.png, (a≠1,n∈N)”时,在验证n=1成立时,左边应该是(   )

    A.1

    B.1+a

    C.1+a+a2

    D.1+a+a2+a3

    开始考试点击查看答案
  • 6用数学归纳法证明“ http://picflow.koolearn.com/upload/papers/20140823/201408232135080651479.png”时,在验证 http://picflow.koolearn.com/upload/papers/20140823/20140823213508081357.png成立时,左边应该是(       )

    A.http://picflow.koolearn.com/upload/papers/20140823/20140823213508096444.png

    B.http://picflow.koolearn.com/upload/papers/20140823/20140823213508112545.png

    C.http://picflow.koolearn.com/upload/papers/20140823/20140823213508299342.png

    D.http://picflow.koolearn.com/upload/papers/20140823/20140823213508315206.png

    开始考试点击查看答案
  • 7在用数学归纳法证明 http://picflow.koolearn.com/upload/papers/20140824/201408240111373191238.png时,则当 http://picflow.koolearn.com/upload/papers/20140824/20140824011137334468.png时左端应在 http://picflow.koolearn.com/upload/papers/20140824/20140824011137365409.png的基础上加上的项是(  )

    A.http://picflow.koolearn.com/upload/papers/20140824/20140824011137381425.png

    B.http://picflow.koolearn.com/upload/papers/20140824/20140824011137397521.png

    C.http://picflow.koolearn.com/upload/papers/20140824/20140824011137412791.png

    D.http://picflow.koolearn.com/upload/papers/20140824/20140824011137428869.png

    开始考试点击查看答案
  • 8用数学归纳法证明等式 http://picflow.koolearn.com/upload/papers/20140824/201408240043407681633.png,从“k到k+1”左端需增乘的代数式为(  )

    A.http://picflow.koolearn.com/upload/papers/20140824/20140824004340784608.png

    B.http://picflow.koolearn.com/upload/papers/20140824/20140824004340815461.png

    C.http://picflow.koolearn.com/upload/papers/20140824/20140824004340830562.png

    D.http://picflow.koolearn.com/upload/papers/20140824/20140824004340846606.png

    开始考试点击查看答案
  • 9已知 n为正偶数,用数学归纳法证明 http://picflow.koolearn.com/upload/papers/20140824/201408240046159411490.png 时,若已假设 http://picflow.koolearn.com/upload/papers/20140824/20140824004615957614.png为偶数)时命题为真,则还需要用归纳假设再证 http://picflow.koolearn.com/upload/papers/20140824/20140824004615973314.png(   )时等式成立           (    )

    A.http://picflow.koolearn.com/upload/papers/20140824/20140824004615988468.png

    B.http://picflow.koolearn.com/upload/papers/20140824/20140824004616004519.png

    C.http://picflow.koolearn.com/upload/papers/20140824/20140824004616019547.png

    D.http://picflow.koolearn.com/upload/papers/20140824/20140824004616035625.png

    开始考试点击查看答案
  • 10用数学归纳法证明不等式 http://picflow.koolearn.com/upload/papers/20140823/201408232235541971288.png的过程中, 由 http://picflow.koolearn.com/upload/papers/20140823/20140823223554213409.png递推到 http://picflow.koolearn.com/upload/papers/20140823/20140823223554244468.png时的不等式左边(    )

    A.增加了http://picflow.koolearn.com/upload/papers/20140823/20140823223554259206.pnghttp://picflow.koolearn.com/upload/papers/20140823/20140823223554275593.png

    B.增加了http://picflow.koolearn.com/upload/papers/20140823/20140823223554306291.pnghttp://picflow.koolearn.com/upload/papers/20140823/20140823223554493731.png

    C.增加了“http://picflow.koolearn.com/upload/papers/20140823/20140823223554493731.png”,又减少了“http://picflow.koolearn.com/upload/papers/20140823/20140823223554540416.png

    D.增加了http://picflow.koolearn.com/upload/papers/20140823/20140823223554275593.png,减少了“http://picflow.koolearn.com/upload/papers/20140823/20140823223554540416.png

    开始考试点击查看答案
返回顶部