当前位置:首页 > 全部子站 > MBA > 备考资料 > 数学

MBA数学提高:解决有关柯西定理的证明题

来源:长理培训发布时间:2018-10-06 12:04:35
  先举个例子设函数F(X)在[A,B]连续,在(A,B)可导,且F(A)=F(B)=0,求证存在S属于(A,B),使 S*F(S)+F‘(S)=0 这类问题都可以化成求S,使F(S)=G(S)*F’(S)的问题,解决方法是构造函数。  

  令 G1(X)=-1/G(X)的积分 Q(X)=e^G1(X) 则我们构造出F(X)*Q(X)这个函数,再用柯西定理去解决。  

  试试看,不用再绞尽脑汁去构造函数。  

  文章开头的例子的解法:求S 使S*F(S)+F‘(S)=0 即F(S)=-1/S*F‘(S)令G(X)=-1/X 则G1(X)=-1/G(X)积分=X积分=X*X/2 则Q(X)=e^(X*X/2) 现在我们构造出函数 P(X)=F(X)*Q(X)=F(X)*e^(X*X/2) 则函数P(X)在[A,B]连续,在(A,B)可导,且P(A)=P(B)=0 根据柯西定理,存在一点S,使P’(S)=0 P‘(X)=F(X)*e^(X*X/2)*X+F’(X)*e^(X*X/2) =[X*F(X)+F‘(X)]*e^(X*X/2) 存在S使P’(X)=0,因为e^(X*X/2)《》0 所以S*F(S)+F‘(S)=0 这些通用解法可以节省时间,否则要想出Q(X)=e^(X*X/2)太费劲。

责编:许小莉

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部