当前位置:首页 > 全部子站 > MBA > 备考资料 > 数学

MBA数学:从数列递推到N球配对问题

来源:长理培训发布时间:2018-09-27 10:40:30

  本篇给出求简单递推数列通项公式的通用解法,并由此思路解一个老题

  以下记A(N)为数列第N项

  1、已知A1=1,A(N)=2A(N-1)+1,求数列通项公式

  解:由题意,A(N)+1=2[A(N-1)+1]

  即 A(N)+1是以2为首项,2为公比的等比数列

  因此 A(N)+1=2^N

  数列通项公式为 A(N)=2^N-1

  2、通用算法

  已知A1=M,A(N)=P*A(N-1)+Q,P《》1,求数列通项公式

  解:设 A(N)+X=P*[A(N-1)+X]

  解得 X=Q/(P-1)

  因此 A(N)+Q/(P-1)是以A1+Q/(P-1)为首项,P为公比的等比数列

  由此可算出A(N)通项公式

  3、已知A1和A2, A(N)=P*A(N-1)+Q*A(N-2),求数列通项公式

  解题思路:设 A(N)+X*A(N-1)=Y*[A(N-1)+X*A(N-2)]

  代入原式可得出两组解,对两组X,Y分别求出

  A(N)+X*A(N-1)的通项公式

  再解二元一次方程得出A(N)

  注:可能只有一组解,但另有解决办法。

  4、现在用上面的思路来解决一个著名的问题:

  N个球和N个盒子分别编号从1到N,N个球各放入一个盒子,求没有球与盒子编号相同的放法总数。

  解:设A(N)为球数为N时满足条件的放法(以下称无配对放法)总数,

  易知A1=0,A2=1

  当N》2时,一号球共有N-1种放法,假设1号球放入X号盒子

  在剩下的N-1个球和N-1个盒子中,如X号球正好放入1号盒子,

  问题等价于有N-2个球的无配对放法,放法总数为:A(N-2)

  在剩下的N-1个球和N-1个盒子中,如X号球没有放入1号盒子,

  则可以把X号球看作1号球,问题等价于有N-1个球的无配对放法,

  放法总数为:A(N-1)

  因此有 A(N)=(N-1)*[A(N-1)+A(N-2)]

  上式可变换为: A(N)-NA(N-1)

  =-[A(N-1)-(N-1)*A(N-2)]

  按等比数列得出: A(N)-NA(N-1)=(-1)^N

  上式除以N!得出:

  A(N) A(N-1) (-1)^N

  ------- = ---------------- + -----------------

  N! (N-1)! N!

  把 A(N)/N!当作新的数列, 把(-1)^N/N!也作为一个数列

  则 A(N)等于数列 (-1)^N/N!从第二项到第N项的和再乘以N

  另外可得出:

  N球恰有K球与盒子配对的放法总数为: C(N,K)*A(N-K)

责编:许小莉

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部