当前位置:首页 > 全部子站 > 论文网 > 财务管理论文

基于K近邻算法的睡眠质量的研究

来源:长理培训发布时间:2019-01-10 18:29:31

 摘要:本文通过运用K近邻算法对睡眠质量展开研究,主要针对睡眠质量的后期影响展开研究,已期为现代居民提高睡眠质量提供借鉴意义。   关键词:K近邻算法 睡眠质量 
  一、K近邻算法 
  K近邻算法是由Cover与Hart在1968年提出的一种基于统计学的分类算法,是非参数算法中最重要的一种算法。在对每个样本数据集进行相似程度计算时,距离的度量标准中常用的有:欧式距离、曼哈顿距离、向量内积、汉明距离,本文采用欧氏距离作为度量标准: 
  欧式距离为常用的两点间或多点间的距离度量方法,又称为欧几里得度量。公式(1)中的数值越小说明两个数据之间的相似度越大。 
  如下图所示是一个在2维空间中采用SR树划分数值点的实例: 
  二、支持向量机算法 
  支持向量机算法(Support Vector Machine,SVM)由Vapnik等人在统计学习方法中的VC维和结构风险最小化原则的基础上于1995年完整地提出,是一种基于统计学习理论的新型算法。由于支持向量机有着优异的分类能力,该算法已在众多研究领域得到广泛的研究与应用,近年来走向了非线性复杂科学和人工智能科学研究的前沿。 
  设计SVM的一个关键问题是核函数和核参数的�x择,选取核函数的不同对SVM性能的影响并不大,但是核函数的参数σ2及误差惩罚因子C对SVM性能有着显著影响,本文采用的核函数是目前婕用最为广泛的径向基函数: 
  Xi、Xj是特征向量σ2是径向基核函数的参数,σ2主要影响着样本集在高维特征空间中分布的复杂度,而误差惩罚因子c能够在确定的特征空间中调整学习机的置信度及经验风险的比例。 
  最后将诊断指数作为输出量,睡眠质量、入睡时间、睡眠时间、睡眠效率、睡眠障碍、催眠药物、日间功能障碍、年龄作为输入量,得到KNN-SVM模型,将测试号的数据代入模型得到诊断结果,综合模型的预测得到最终诊断结果。结果表明睡眠质量低的话,会产生一系列的不良后果,甚至导致抑郁焦虑等严重后果。

责编:荣秀

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部