关键词: 力负荷感受细胞 骨组织
对力学刺激的识别和反应是生物体的重要功能。触觉、听觉、压力感受器、本体感受器及重力感受功能都与力学信号的感受、传递机制有关。体内组织的形成、发展方式与其所受的应力有关,例如骨组织的结构与其内部应力分布有关,应力大的部位骨组织密度大,应力小的部位骨密度小[1]。骨组织能用最少的骨量来满足运动功能所需的骨强度。当因衰老或力负荷减少使骨量下降时,应力小的部位骨量丢失常常较快,应力大的部位骨量保存常常较好。可见骨组织能根据外界负荷和内部应力来调节整体骨量的增减和内部骨量的分布及构造。但骨组织对力负荷的感受、传递和反应机制还不十分清楚,这也正是骨代谢研究中的重点课题。本文根据目前的研究进展和有关学说,试图对骨组织的力负荷感受机制进行阐述和探讨。
骨表面有骨衬细胞(bone-lining cell)、成骨细胞和破骨细胞,其中骨衬细胞占94%,成骨细胞占5%。埋于基质中的低活性成骨细胞称为骨细胞(osteocyte)。骨衬细胞与骨细胞极相似,也是由成骨细胞活性下降转化而成,但位于骨的表面。骨衬细胞为扁平细胞,细胞器较少,蛋白合成和能量代谢较慢。骨细胞和骨衬细胞有许多突起,深入矿化基质的骨小管(canaliculi)内。细胞突起的浆膜和骨小管壁之间充满了骨组织间液和大分子蛋白聚糖。骨细胞突起长约15mm,能穿过骨小管与相邻细胞的突起相接触。每个骨细胞与多个细胞相连,最多可达12个。两个相接触的突起构成缝隙连接,连接蛋白为connexin43[2]。离子和小分子物质可以通过缝隙连接在细胞间传递,缝隙连接也是细胞间的电信号传递的通道。所有的骨细胞与骨内、外膜上的骨衬细胞、成骨细胞通过缝隙连接构成多极的网状结构,局部的反应信号能迅速传递到整个骨组织。
用脉冲液体流动和间歇液体静压力分别处理培养的骨细胞、成骨细胞、骨膜成纤维细胞,发现3种细胞的前列腺素E2(PG E2)的产量都升高,但骨细胞的PG E2升高最快[3]。骨细胞受到脉冲液流作用1小时后,其PG E2产量升高可维持1小时以上,而间歇静压力需要6小时才能出现此变化。实验结果表明,骨细胞的力学感受敏感性>成骨细胞>成纤维细胞,骨细胞对流体剪切力的敏感性大于液体静压力。
骨细胞受到液体剪切力后引起PG和NO的产量升高,这与血管内皮细胞相类似。内皮细胞可以感受和调节血液流变力学的变化,当血流剪切力达到0.5Pa时,内皮细胞增加PG和NO的产量,使血管舒张,以保持恒定的血管内剪切压力。骨细胞可能与内皮细胞相类似,调节骨适应性再建,使骨保持稳定的应变和稳定的骨小管内液流剪切力。
整合素是介导细胞与细胞外基质粘附分子,是细胞膜表面糖蛋白受体,主要通过识别配体的"精氨酸-甘氨酸-天门冬氨酸"三肽序列(Arg-Gly-Asp,RGD)介导粘附。骨细胞与基质的粘合并非均匀,细胞膜上的整合素将细胞"点焊"到胞外基质。整合素跨越细胞膜,向外与基质的纤维连接素(FN)、骨桥蛋白(OPN)、骨唾液蛋白(BSP)相连;向内与粘着斑相连。粘着斑由肌动蛋白(actin)、踝蛋白(talin)、桩蛋白(paxillin)、粘着斑蛋白(vinculin)和张力蛋白(tensin)组成,将细胞骨架固定在细胞膜上[5]。
骨组织抵抗力负荷而产生应变,骨小管和骨陷窝中的骨组织间液因压力的变化而流动。当液流经过骨细胞时,流体的剪切力使骨细胞膜上整合素与基质蛋白的联结产生应变,使整合素的形态发生改变,从而激活酪氨酸激酶如粘着斑激酶(focal adhesion kinase)[7]。粘着斑激酶通过自身磷酸化而激活,启动桩蛋白、张力蛋白的磷酸化,加速粘着斑的形成。随着粘着斑的形成,流体剪切力通过细胞外基质蛋白经整合素透过细胞膜传递给细胞骨架。
整合素将应力传递给细胞骨架后,是如何将力学信号转化为生化信号的?要回答这个问题,必须引入一个概念:细胞骨架的张拉完整性。张拉完整性的概念是由Donald E.Ingber引入生物结构研究的[8]。
点击加载更多评论>>