- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
就当前形势来看,高中数学教学依旧延续着传统教学的模式,无法摆脱应试教育的影响。该文仅就高中数学概念教学中存在着的一些问题及怎样依照新课标的理念要求,在展示探究过程,凸显探究特点方面展开初步的讨论。
1 数学概念的特点和学习意义
数学概念是反映一类对象本质属性的思维形式,它具有相对独立性。概念反映的是一类对象的本质属性,即这类对象的内在的、固有的属性,而不是表面的属性,而这类对象是现实世界的数量关系和空间形式,它们已被舍去了具体物质属性和具体的关系,仅被抽取出量的关系和形式构造,在某种程度上表现为对原始对象具体内容的相对独立性。
数学概念教学在中学数学中非常关键,是学好数学的重要一环,是基础知识和基本技能教学的核心,正确理解概念是学好数学的基础。有的学生数学成绩差,最直接的一个原因就是概念不清,尤其是普通中学的学生,数学素养差的关键是在对数学概念的理解、应用和转化等方面的差异。因此,要想提高中学数学教学质量,最重要的就是要抓好概念教学。教学过程中如果能够充分考虑到这一因素,抓住有限的概念教学的契机,以提高大多数学生的数学素养是完全可以做到的,同时,数学素养的提高也为学生的各项能力和素质的培养提供了有利条件以及必要保障。
从平常数学概念的教学实际来看,学生往往会出现两种倾向,其一是有的学生认为基本概念单调乏味,不去重视它,不求甚解,导致概念认识和理解模糊;其二是有的学生对基本概念虽然重视但只是死记硬背,而不去真正透彻理解,只有机械的、零碎的认识.这样久而久之,严重影响了对数学基础知识和基本技能的掌握和运用.比如有同学在解题中得到异面直线的夹角为钝角,这些错误都是由于学生对概念认识模糊造成的.只有真正掌握了数学中的基本概念,我们才能把握数学的知识系统,才能正确、合理、迅速地进行运算、论证和空间想象.从一定意义上说,数学水平的高低,取决于对数学概念掌握的程度。
2 新课程观下要有效实施新课程下数学基本概念教学,必须重视以下几个重要环
(1)数学基本概念教学,要充分挖掘数学概念产生的知识背景,让学生体验在概念产生过程中学习数学概念首先,新课程在不同年级的数学知识结构上发生了很大的变化,如果我们还是采用传统的方式进行概念教学,那么在新教材中恐怕很难达到预期的教学目标。其次,一个数学概念的产生,都有着丰富的知识背景,而通过了解这些背景知识来认识一个数学概念,是最佳途径。
通过充分挖掘相等向量和共线向量(平行向量)的几何背景,让学生经历从线段的几何性质→有向线段的几何性质→抽象概括出相等向量和共线向量(平行向量)的定义,这样,学生对相等向量和共线向量(平行向量)概念就有深刻的认识;如果忽略了知识背景分析,那么我们就犯下了一个严重的错误:失去了对学生培养抽象概括能力和创造精神的好机会。因此,数学基本概念教学在呈现方式上,不能机械地照本宣科授课,教师要深挖数学概念的知识背景,精心创设情境,适当地开展"发现"式数学活动,让学生在学习数学概念的同时还能发展他们的创造性思维。
(2)数学基本概念教学,要重视问题性在数学概念的形成过程的"关键点"上,以恰时恰点的问题引导数学活动,有利于明确学生思维的方向、培养问题意识,孕育创新精神。在集体备课时,有些老师往往会运用关联性不强的问题凑合成"问题串"来启发学生抽象概括出数学概念,这是有害无益的。那种忽视新教材设置栏目,不引导学生分析研究,直接给出抽象概念的方法也是不可取的。提倡"数学基本概念教学,要重视问题性",但是问题的设置要在"关键点"上,这样,才能明确学生思维的方向、帮助学生从实际问题中抽象概括出数学概念。在进行数学基本概念课堂教学中,要重视在学生思维的"最近发展区"设计合适的、具有启发性的问题串,通过"观察、思考、探究"学习数学概念,从而培养学生的问题意识和抽象概括能力。
(3)数学基本概念教学,要重视创设体现数学概念的思想方法的情境新教材是以数及其运算、函数、空间观念、数形结合、向量、导数、统计、随机观念、算法等核心概念和基本思想为贯穿整套教材的灵魂,而数学思想方法是人们认识数学的意识,是将知识转化成能力的桥梁,因此,创设体现数学概念的思想方法的情境是数学基本概念教学的出发点和落脚点。例如,以上所谈到的向量概念教学中所创设问题情境,就隐含了分类和类比的思想方法,在相等向量和共线向量(平行向量)的课堂教学中所创设的问题情境,就隐含了数形结合的思想方法。
(4)数学基本概念的教学,要注重概念联系性由于新教材要求:以核心知识(基本概念和原理,重要的数学思想方法)为支撑和联结点,螺旋上升地组织学习内容。因此,在课堂教学中引导学生深入挖掘概念的内涵和外延,建立新旧概念间的联系,是符合新课程要求的,而且对帮助学生准确理解数学概念、完善构建知识体系是有有益的。例如,"变化率与导数"的概念教学时,引入导数概念后,在说明"气球半径r关于体积V的导数就是气球的瞬时膨胀率、高度h关于时间t的导数就是运动员的瞬时速度"的同时,可以再结合具体例子来加深理解导数的概念内涵。
(5)数学基本概念的教学,要注重应用性概念形成后,要引导学生应用概念解决问题,使学生及时领会概念在解决问题的作用,是学生分析问题和解决问题能力形成的关键环节。在导数概念教学中,可以从新教材中习题中选择出分别能应用的相应公式来解决的问题,通过引导学生解决问题,这样,既能让学生对导数的概念及其几何意义加深认识,也能使学生在对比学习中促进解决问题能力的提高。所以,数学基本概念的教学,及时处理好应用概念解决问题,是理解概念内涵和外延的有效途径,是学习者能力形成的重要标志。
3 结语
综上所言,数学概念的教学和数学解题教学一样,是培养学生探究意识和探究能力的重要途径。教学中应该努力克服轻视概念教学的思想,通过科学设计概念教学的各个环节,充分凸显探究的特点,实现新课程改革赋予的培养学生探究意识和探究能力的目标。
责编:杨盛昌
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>