- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
中学数学教学大纲(试验修订本)将培养学生的三大能力之一"逻辑思维能力"改为"思维能力",虽然只是去掉两个字,概念的内涵却更加丰富,人们在教育的实践中实现了认识上的转变。在注重逻辑思维能力培养的同时,还应该注重观察力、直觉力、想象力的培养。特别是直觉思维能力的培养由于长期得不到重视,学生在学习的过程中对数学的本质容易造成误解,认为数学是枯燥乏味的;同时对数学的学习也缺乏取得成功的必要的信心,从而丧失数学学习的兴趣。过多的注重逻辑思维能力的培养,不利于思维能力的整体发展。培养直觉思维能力是社会发展的需要,是适应新时期社会对人才的需求。
一、数学直觉概念的界定
简单的说,数学直觉是具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察。
对于直觉作以下说明:
(1)直觉与直观、直感的区别
直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。例如等腰三角形的两个底角相等,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知。而直觉的研究对象则是抽象的数学结构及其关系。庞加莱说:"直觉不必建立在感觉明白之上.感觉不久便会变的无能为力。例如,我们仍无法想象千角形,但我们能够通过直觉一般地思考多角形,多角形把千角形作为一个特例包括进来。"由此可见直觉是一种深层次的心理活动,没有具体的直观形象和可操作的逻辑顺序作思考的背景。正如迪瓦多内所说:"这些富有创造性的科学家与众不同的地方,在于他们对研究的对象有一个活全生的构想和深刻的了解,这些构想和了解结合起来,就是所谓'直觉'……,因为它适用的对象,一般说来,在我们的感官世界中是看不见的。"
(2)直觉与逻辑的关系
从思维方式上来看,思维可以分为逻辑思维和直觉思维。长期以来人们刻意的把两者分离开来,其实这是一种误解,逻辑思维与直觉思维从来就不是割离的。有一种观点认为逻辑重于演绎,而直观重于分析,从侧重角度来看,此话不无道理,但侧重并不等于完全,数学逻辑中是否会有直觉成分?数学直觉是否具有逻辑性?比如在日常生活中有许多说不清道不明的东西,人们对各种事件作出判断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用。数学也是对客观世界的反映,它是人们对生活现象与世界运行的秩序直觉的体现,再以数学的形式将思考的理性过程格式化。数学最初的概念都是基于直觉,数学在一定程度上就是在问题解决中得到发展的,问题解决也离不开直觉,下面我们就以数学问题的证明为例,来考察直觉在证明过程中所起的作用。
一个数学证明可以分解为许多基本运算或许多"演绎推理元素",一个成功的数学证明是这些基本运算或"演绎推理元素"的一个成功的组合,仿佛是一条从出发点到目的地的通道,一个个基本运算和"演绎推理元素"就是这条通道的一个个路段,当一个成功的证明摆在我们面前开始,逻辑可以帮助我们确信沿着这条路必定能顺利的到达目的地,但是逻辑却不能告诉我们,为什么这些路径的选取与这样的组合可以构成一条通道。事实上,出发不久就会遇上叉路口,也就是遇上了正确选择构成通道的路段的问题。庞加莱认为,即使能复写出一个成功的数学证明,但不知道是什么东西造成了证明的一致性,……,这些元素安置的顺序比元素本身更加重要。笛卡尔认为在数学推理中的每一步,直觉力都是不可缺少的。就好似我们平时打篮球,要靠球感一样,在快速运动中来不及去作逻辑判断,动作只是下意识的,而下意识的动作正是在平时训练产生的一种直觉。
在教育过程中,老师由于把证明过程过分的严格化、程序化。学生只是见到一具僵硬的逻辑外壳,直觉的光环被掩盖住了,而把成功往往归功于逻辑的功劳,对自己的直觉反而不觉得。学生的内在潜能没有被激发出来,学习的兴趣没有被调动起来,得不到思维的真正乐趣。《中国青年报》曾报道,"约30%的初中生学习了平面几何推理之后,丧失了对数学学习的兴趣",这种现象应该引起数学教育者的重视与反思。
二、直觉思维的主要特点
直觉思维具有自由性、灵活性、自发性、偶然性、不可靠性等特点,从培养直觉思维的必要性来看,笔者以为直觉思维有以下三个主要特点:
(1)简约性
直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象作出的敏锐而迅速的假设,猜想或判断,它省去了一步一步分析推理的中间环节,而采取了"跳跃式"的形式。它是一瞬间的思维火花,是长期积累上的一种升华,是思维者的灵感和顿悟,是思维过程的高度简化,但是它却清晰的触及到事物的"本质"。
(2)创造性
现代社会需要创造性的人才,我国的教材由于长期以来借鉴国外的经验,过多的注重培养逻辑思维,培养的人才大多数习惯于按部就班、墨守成规,缺乏创造能力和开拓精神。直觉思维是基于研究对象整体上的把握,不专意于细节的推敲,是思维的大手笔。正是由于思维的无意识性,它的想象才是丰富的,发散的,使人的认知结构向外无限扩展,因而具有反常规律的独创性。
伊恩.斯图加特说:"直觉是真正的数学家赖以生存的东西",许多重大的发现都是基于直觉。欧几里得几何学的五个公设都是基于直觉,从而建立起欧几里得几何学这栋辉煌的大厦;哈密顿在散步的路上进发了构造四元素的火花;阿基米德在浴室里找到了辨别王冠真假的方法;凯库勒发现苯分了环状结构更是一个直觉思维的成功典范。
(3)自信力
学生对数学产生兴趣的原因有两种,一种是教师的人格魅力,其二是来自数学本身的魅力。不可否认情感的重要作用,但笔者的观点是,兴趣更多来自数学本身。成功可以培养一个人的自信,直觉发现伴随着很强的"自信心"。相比其它的物资奖励和情感激励,这种自信更稳定、更持久。当一个问题不用通过逻辑证明的形式而是通过自己的直觉获得,那么成功带给他的震撼是巨大的,内心将会产生一种强大的学习钻研动力,从而更加相信自己的能力。
高斯在小学时就能解决问题"1+2+ …… +99+100=?",这是基于他对数的敏感性的超常把握,这对他一生的成功产生了不可磨灭的影响。而现在的中学生极少具有直觉意识,对有限的直觉也半信半疑,不能从整体上驾驭问题,也就无法形成自信。
责编:杨盛昌
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>