- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
摘 要:微积分作为数学知识的基础 ,是 学习经济 学的必备知识 ,着重讨论了微积分在经济学中最基本的一些 应用 , 计算 边际成本、 边际收入、 边际利润并解释其经济意义, 寻求最小生产成本或制定获得最大利润的一系列策略。
关键词:微积分;边际 分析 ;弹性;成本;收入;利润;最大值;最小值
1 导数在经济分析中的应用
1.1 边际分析在经济分析中的的应用
1.1.1 边际需求与边际供给
设需求函数Q=f(p)在点p处可导(其中Q为需求量,P为商品价格),则其边际函数Q'=f'(p)称为边际需求函数,简称边际需求。类似地,若供给函数Q=Q(P)可导(其中Q为供给量,P为商品价格),则其边际函数Q=Q(p)称为边际供给函数,简称边际供给。
1.1.2 边际成本函数
总成本函数C=C(Q)=C0+C1(Q);平均成本函数=(Q)=C(Q)Q;边际成本函数C'=C'(Q).C'(Q0)称为当产量为Q0时的边际成本,其经济意义为:当产量达到Q0时,如果增减一个单位产品,则成本将相应增减C''(Q0)个单位。
1.1.3 边际收益函数
总收益函数R=R(Q);平均收益函数=(Q);边际收益函数R'=R'(Q).
R'(Q0)称为当商品销售量为Q0时的边际收益。其经济意义为:当销售量达到Q0时,如果增减一个单位产品,则收益将相应地增减R'(Q0)个单位。
1.1.4 边际利润函数
利润函数L=L(Q)=R(Q)-C(Q);平均利润函数;=(Q)边际利润函数L'=L'(Q)=R'(Q)-C'(Q).L'(Q0)称为当产量为Q0时的边际利润,其经济意义是:当产量达到Q0时,如果增减一个单位产品,则利润将相应增减L'(Q0)个单位。
例1 某 企业 每月生产Q(吨)产品的总成本C(千元)是产量Q的函数,C(Q)=Q2-10Q+20。如果每吨产品销售价格2万元,求每月生产10吨、15吨、20吨时的边际利润。
解:每月生产Q吨产品的总收入函数为:
R(Q)=20Q
L(Q)=R(Q)-C(Q)=20Q-(Q2-1Q+20)
=-Q2+30Q-20
L'(Q)=(-Q2+30Q-20)'=-2Q+30
则每月生产10吨、15吨、20吨的边际利润分别为
L'(10)=-2×10+30=10(千元/吨);
L'(15)=-2×15+30=0(千元/吨);
L'(20)=-2×20+30=-10(千元/吨);
以上结果表明:当月产量为10吨时,再增产1吨,利润将增加1万元;当月产量为15吨时,再增产1吨,利润则不会增加;当月产量为20吨时,再增产1吨,利润反而减少1万元。
显然,企业不能完全靠增加产量来提高利润,那么保持怎样的产量才能使企业获得最大利润呢?
1.2 弹性在经济分析中的应用
1.2.1 弹性函数
设函数y=f(x)在点x处可导,函数的相对改变量Δyy=f(x+Δx)-f(x)y与自变量的相对改变量Δxx之比,当Δx→0时的极限称为函数y=f(x)在点x处的相对变化率,或称为弹性函数。记为EyEx•EyEx=limδx→0
ΔyyΔxx=limδx→0ΔyΔx.xy=f'(x)xf(x)
在点x=x0处,弹性函数值Ef(x0)Ex=f'(x0)xf(x0)称为f(x)在点x=x0处的弹性值,简称弹性。EExf(x0)%表示在点x=x0处,当x产生1%的改变时,f(x)近似地改变EExf(x0)%。
1.2.2 需求弹性
经济学中,把需求量对价格的相对变化率称为需求弹性。
对于需求函数Q=f(P)(或P=P(Q)),由于价格上涨时,商品的需求函数Q=f(p)(或P=P(Q))为单调减少函数,ΔP与ΔQ异号,所以特殊地定义,需求对价格的弹性函数为η(p)=-f'(p)pf(p)
例2 设某商品的需求函数为Q=e-p5,求(1)需求弹性函数;(2)P=3,P=5,P=6时的需求弹性。
解:(1)η(p)=-f'(p)pf(p)=-(-15)e-p5.pe-p5=p5;
(2)η(3)=35=0.6;η(5)=55=1;η(6)=65=1.2
η(3)=0.6< 1,说明当P=3时,价格上涨1%,需求只减少0.6%,需求变动的幅度小于价格变动的幅度。
η(5)=1,说明当P=5时,价格上涨1%,需求也减少1%,价格与需求变动的幅度相同。
责编:杨盛昌
下一篇:经济学论文:正说反说新经济
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>