- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:
如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
六、余数问题的例题:
例.两个整数相除得商数是12和余数是26,被除数、除数、商数及余数的和等于454,除数是().
考点:有余数的除法.
分析:根据关系式:被除数=除数×商+余数可以进行列方程进行解答.
解答:解:设除数是x,
根据:被除数=除数×商+余数,得被除数=12X+26,可列方程,
12x+26+x+12+26=454
13x+64=454
13x=454-64
13x=390
x=390÷13
x=30;
答:除数是30.
点评:本道题目有两个未知量,就是被除数与除数,但是隐含了一个关系式:被除数=除数×商+余数和题目给我们一个等量关系式,通过这些可以列方程进行解决.
责编:彭亚玲
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>