当前位置:首页 > 全部子站 > 军人转业 > 军转行测

2019军转干行测备考:工程问题如何设特值

来源:长理培训发布时间:2019-05-06 10:04:29

          在行测考试当中,许多考生只想做一些简单的自己能够驾驭的题型,那么工程问题就在首选之列。这种题型传统,对特值法的依赖较高,所以会熟练应用特值法,就能够解决很多工程问题。特值法比较灵活,因情况不同设法也不同,今天就讲解一下在工程问题各种的情况中该如何设特值。

一、设什么?

工程问题的基本关系式是W=P×t,题目中往往只给出t,结果还是让求t,那么我们就可以设W或t为特值。设的时候是设一推一,而不是同时设。

二、怎么设?

1. 设W为特值

当题目中出现两个以上完成工作总量且中途效率不变的时间时,设“时间们”的最小公倍数为工作总量。

例1.一项工程,甲、乙合作 12 天完成,乙、丙合作 9 天完成,丙、丁合作 12 天完成,如果甲、丁合作,则完成这项工程需要的天数是:

A.16 B.18 C.24 D.26

【答案】B。此题给出的12天、9天、12天三个时间都是完成工作总量且中途效率不变的时间,此时我们设工作总量为 12和9的最小公倍数为36,则甲+乙=3,乙+丙=4,丙+丁=3。因此甲+丁=(甲+乙)+(丙+丁)-(乙+丙)=3+3-4=2。甲、丁合作完成这个工程需要 36÷2=18天。

2.设P为特值

情况1:当题目中给出或者我们可以推出效率比值时,我们设比值为各自的效率。

例2.甲、乙、丙三个工程队完成一项工作的效率比为 2∶3∶4。某项工程,乙先做了三分之一后,余下交由甲与丙合作完成,3 天后完成工作。问完成此工程共用了多少天?

A.6 B.7 C.8 D.9

【答案】A。题目中已经明确给出,甲、乙、丙三个工程队完成一项工作的效率比为 2∶3∶4,于是我们设甲、乙、丙的效率分别为 2、3、4,甲丙合作 3 ,完成(2+4)×3=18,则工作总量为 18÷2/3 =27,故乙做三分之一用了 9÷3=3 天,即完成此工程共用了 3+3=6 天。

情况2:当团体合作(人数多到不用甲乙丙来表示)时,设每人单位时间内效率为“1”。

例3.建筑公司安排 100 名工人去修某条路,工作 2 天后抽调走 30 名工人,又工作了 5天后再抽调走 20 名工人,总共用时 12 天修完。如希望整条路在 10 天内修完,且中途不得增减人手,则要安排多少名工人?

A.80 B.90 C.100 D.120

【答案】A。此题中工作人数众多,且没有用甲乙丙来表示,我们假设每个工人每天工作量为 1,则这条路的工作量为 100×2+(100-30)×5+(100-30-20)(12-2-5)=800,如果要在 10 天内修完,则要安排 800÷10=80名工人。

责编:曾珂

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部