当前位置:首页 > 全部子站 > 军人转业 > 军转行测

军转干行测备考:极值问题之和定极值

来源:长理培训发布时间:2018-09-05 11:29:39

  一、概念

和定极值:当几个数的和一定时,求其中某个量的最大值或者最小值的问题。

二、思想

求解过程中,要使某个量最大,则其余的量应该尽可能的小;要使某个量最小,则其余的量应该尽可能的大。

三、常用题型

1.正向极值

(1)求最大量的最大值

【例1】5名儿童的年龄之和为38岁,已知每个人年龄都不相同 ,且年龄都不低于5岁,问年龄最大的小朋友最大是多少岁?

A.11 B.12 C.13 D.14

【中公解析】B。分析题干可知要求年龄最大的最大多少岁即求正向极值,要使他最大则其他人尽可能小,依次为:5,6,7,8。所以最大的年龄为:38-(5+6+7+8)=12岁,选择B。

(2)求最小量的最小值

【例2】6个数的和为48,已知各个数各不相同,且最大的数是11,则最小的数最少是多少?

A.3 B.4 C.5 D.6

【中公解析】A。求最小的数最少是多少,即要让其他的数尽可能大,但是由于题目中已经有限制条件最大的数为11,且各个数都不相同,因此其他的数依次为:11,10,9,8,7,所以最小的数为:48-(11+10+9+8+7)=3,选择A。

2.逆向极值

在逆向极值问题中,与正向极值不一样,它存在矛盾的地方,因此在逆向极值中要使大的量仍然大,小的量仍然小,必须让各个量均等、接近。

(1)求最大量的最小值

【例3】现有21多花要将它分给5个人,若每个人分到的鲜花数量各不相同,问分到话最多的那个人至少可以分到几朵?

A.6 B.7 C.8 D.9

【中公解析】B。分析题干的信息可知该题求得是最大量的最小值,因此要尽可能使每个人分到的花朵接近。所以依次分得的数量为:2,3,4,5,6,此时会发现还剩1朵,根据题目要求发现最后1朵只能分给最多的那个人,所以最多的那个人至少可以分到7多花,选择B。

(2)求最小量的最大值

【例4】小伟、小伟爸爸、小伟爷爷三个人的年龄和为98岁,已知三代年龄差每一代至少为25岁,,并且三代人的年龄均为整数,问小伟的年龄最大可以是几岁?

A.4 B.7 C.5 D.6

 

 

中公教育专家以上给大家分享的就是在极值问题中常见的核定极值问题中的两种比较简单的题型,当然在考试中还有可能出现其他的一些变形形式,主要为混合极值问题,只要大家熟练的掌握了正向极值和逆向极值,混合极值肯定就不在话下了。

责编:曾珂

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部