- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
定理:
1 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
2 定理1 关于某条直线对称的两个图形是全等形
3 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
4 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
5 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
6 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
7 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
8 定理 四边形的内角和等于360°
9 四边形的外角和等于360°
10 多边形内角和定理 n边形的内角的和等于(n-2)×180°
11 推论 任意多边的外角和等于360°
12 平行四边形性质定理1 平行四边形的对角相等
13 平行四边形性质定理2 平行四边形的对边相等
14 推论 夹在两条平行线间的平行线段相等
15 平行四边形性质定理3 平行四边形的对角线互相平分
16 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
17 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
18 平行四边形判定定理3 对角线互相平分的四边形是平行四边形
19 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
20 矩形性质定理1 矩形的四个角都是直角
21 矩形性质定理2 矩形的对角线相等
22 矩形判定定理1 有三个角是直角的四边形是矩形
23 矩形判定定理2 对角线相等的平行四边形是矩形
24 菱形性质定理1 菱形的四条边都相等
25 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
26 菱形面积=对角线乘积的一半,即S=(a×b)÷2
27 菱形判定定理1 四边都相等的四边形是菱形
28 菱形判定定理2 对角线互相垂直的平行四边形是菱形
29 正方形性质定理1 正方形的四个角都是直角,四条边都相等
30 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
31 定理1 关于中心对称的两个图形是全等的
32 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
33 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
34 等腰梯形性质定理 等腰梯形在同一底上的两个角相等
35 等腰梯形的两条对角线相等
36 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形;
37 对角线相等的梯形是等腰梯形
38 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
39 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
40 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
责编:张立娟
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>