基于神经网络的深基坑支护变形预测
来源:互联网发布时间:2017-03-01 04:35:42
基于神经网络的深基坑支护变形预测
来源:考试大【考试大:学子希望之家!】2011年8月19日
近年来,随着建设的发展,基坑工程的数量越来越多,而且深基坑工程无论在数量上还是在难度上都有大幅度提高,使得在深基坑工程中发生的事故也越来越多,造成了重大的经济损失。深基坑工程中的最大问题是由于开挖引起周围土体变形,从而导致周围的建筑物和地下管线等设施的破坏。基坑变形的监测及其预报的研究引起工程技术人员的广泛重视。
本文以人工神经网络为基础,利用其强大的非线性映射能力,以已有的实测数据为样本,建立深基坑单支点排桩支护结构最大侧向位移的预测模型,实现对深基坑变形的非线性预测。
神经网络是由大量的神经元广泛连接而成。人工神经元是对神经元的模拟,是一个多输入,单输出的非线性模型,它的输入输出关系用传递函数(也叫激励函数)来表示。常用的传递函数有:阀值函数,线性函数,S形函数(Sigmoid),径向基函数等。根据人工神经元的连接方式不同,神经网络可分成两大类:分层结构的网络、相互结合网络。图1、图2分别为三层前向网络结构图和神经元结构模型。
图1:三层前向网络结构图图2:神经元结构模型
神经网络对非线性问题有强大而准确的映射能力。1987年,RobertHecht-Nielsen提出了Kolmogorov多层神经网络映射存在定理,从理论上证明了,包含一个隐层的三层神经网络可对任何的连续的非线性函数进行任意精度的逼近。正是由于神经网络具有这个特性,使得神经网络被广泛应用到各个领域。
3.1选用的样本数据
表1 某地区深基坑支护结构工程资料
点击加载更多评论>>