当前位置:首页 > 全部子站 > 长理函授自考培训 > 高起点 > 文科数学

难点5:求解函数解析式-2019年高起点数学文科复习考点-湖南成教

来源:长理培训发布时间:2019-06-10 13:57:20

 难点5求解函数解析式

 

求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.

 

●难点磁场

 

(★★★★)已知f(2-cosx)=cos2x+cosx,求f(x-1).

 

●案例探究

 

[例1](1)已知函数f(x)满足f(logax)=(其中a>0,a≠1,x>0),求f(x)的表达式.

 

(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式.

 

命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.

 

知识依托:利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域.

 

错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.

 

技巧与方法:(1)用换元法;(2)用待定系数法.

 

解:(1)令t=logax(a>1,t>0;0

 

因此f(t)=(at-a-t)

 

∴f(x)=(ax-a-x)(a>1,x>0;0

 

(2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c

 

得并且f(1)、f(-1)、f(0)不能同时等于1或-1,所以所求函数为:f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1.

 

[例2]设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象.

 

命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目.知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.

 

错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.

 

技巧与方法:合理进行分类,并运用待定系数法求函数表达式.

 

解:(1)当x≤-1时,设f(x)=x+b

 

∵射线过点(-2,0).∴0=-2+b即b=2,∴f(x)=x+2.

 

(2)当-1

 

∵抛物线过点(-1,1),∴1=a·(-1)2+2,即a=-1

 

∴f(x)=-x2+2.

 

(3)当x≥1时,f(x)=-x+2

 

综上可知:f(x)=作图由读者来完成.

 

●锦囊妙计

 

本难点所涉及的问题及解决方法主要有:

 

1.待定系数法,如果已知函数解析式的构造时,用待定系数法;

 

2.换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;

 

3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);

 

另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.

责编:蔡爱秀

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部