- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
连续
1、知识范围
(1)函数连续的概念
函数在一点处连续的定义、左连续与右连续函数在一点处连续的充分必要条件、函数的间断点及其分类
(2)函数在一点处连续的性质
连续函数的四则运算、复合函数的连续性、反函数的连续性
(3)闭区间上连续函数的性质
有界性定理、最大值与最小值定理、介值定理(包括零点定理)
(4)初等函数的连续性
2、要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
一元函数微分学
(一)导数与微分
1、知识范围
(1)导数概念
导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系
(2)求导法则与导数的基本公式
导数的四则运算、反函数的导数、导数的基本公式
(3)求导方法
复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数
(4)高阶导数
高阶导数的定义、高阶导数的计算
(5)微分
微分的定义、微分与导数的关系、微分法则一阶微分形式不变性
2、要求
(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。
(2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。
(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简单函数的阶导数。
(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
(二)微分中值定理及导数的应用
1、知识范围
(1)微分中值定理
罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理
(2)洛必达(L‘Hospital)法则
(3)函数增减性的判定法
(4)函数的极值与极值点最大值与最小值
(5)曲线的凹凸性、拐点
(6)曲线的水平渐近线与铅直渐近线
责编:许小莉
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>