- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
首先,我们回顾一下工程问题的基本数量关系:工作总量=工作时间×工作效率,常常用字母表示为W=P·T。了解了这个公式之后,我们再来明确一下什么是多者合作问题,也就是说一项工程如果交给甲乙两个人同时开工、共同完成,属于多者合作问题。多者合作的关键是效率要加和。
1、根据题干描述所给条件与各自工作时间有关,可以设工作总量为时间的最小公倍数,进而求出各自的工作效率及其他相关量。
【例1】某项工程,甲工程队单独施工需要30天完成,乙工程队单独施工需要25天完成。甲队单独施工了4天后,改由两队一起施工,期间甲队休息了若干天,最后整个工程共耗时19天完成,问甲队中途休息了几天?
A 1 B 3 C 5 D 7
【答案】选D。
【解析】题干中所给的是甲乙两工程队单独施工完成工作的时间,所以根据我们所给的方法设工作总量为30和25的最小公倍数,即150。则甲每天工作量为5,乙每天工作量为6。乙一共干了19-5=14天,工作量为15×6=90,剩下150-90=60,需要甲干60÷5=12天,故甲队中途休息了19-12=7天,直接选D。
2、根据题干描述所给条件是效率之间的关系,可以设效率的最简比为特值,进而求出工作总量及其他相关量。
【例2】一项工程,甲先做了2天,之后甲、乙又工作6天完成全部工程。甲、乙的效率比为3:2。则甲单独需要几天完成?
A 10 B 11 C 12 D 13
【答案】选C。
【解析】根据题干所给的条件,设效率的最简比为效率,我们可以得出P甲:P乙=3:2,所以用所给的方法设甲的效率为3,乙的效率为2,则总工作量为3×2+(3+2)×6=36。则甲单独完成需要的时间为36÷3=12天。直接选C。
通过以上几道题目的练习与解析,相信大家对于多者合作做法已经有了大体的了解,望大家平时多做练习,提高做题速度。
责编:陈宇芳
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>