- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
隔板法
题目特征与解题方法:解决相同元素的分给不同人的问题。之前我们讲解的5种题型当中,被分配元素都是不同的,而隔板法解决把相同元素分给人的问题,例如10个相同的小球,7个比赛名额,它们本身没有差异。此类问题把分配元素等效成小球,在空隙中插入板子,有多少种插板方式就有多少种分配方式。
【例】把10块一样的糖果分给甲乙两人,每人至少分一块糖,有几种不同的分配方式?
解析:把10块糖分给2个人是一个很简单的题目,我们用穷举的方式也能解决,用第一个数字代表甲分的数量,第二个数字代表乙分的数量,有(1,9)(2,8)(3,7)(4,6)(5,5)(6,4)(7,3)(8,2)(9,1)9种,用模型表示也就是(o o o o|o o o o o o)这十个糖果中插入一块板子,板左边的糖给甲,右边的给乙,10块糖中有9个空,因此有9种插板方式,也就是有9种分法。
这六种方法就是解决排列组合问题的基本方法,当然还有路径问题,分配问题,在考试中出现频率不高。中公教育把今天的知识略微总结,可以归纳成:
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
相邻要选捆绑法,不邻要用插空法。正面复杂用间接,同素分配隔板法。
责编:hejuanhua
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>