2021年甘肃国家电网考试招聘行测考点:裂项相消法
来源:长理培训发布时间:2020-08-10 09:18:21
整体代换法
【主要考点】
这类计算题先不要急于去计算出具体结果,先观察所求的式子,尽量多的找出其中的同类项,把同类项做为一个整体参量计算,最后在计算具体结果,这样便能省去不少计算量。
【经典例题】
1. 为多少?
分析:这道题,如果我们直接算的话会很烦琐,展开式的项数太多,增加计算量,先观察没项的相同部分,可知为 ,令 = ,令分式 = ,这样原式就简化为 ,这样来计算就简便多了。
裂项相消法
【主要考点】
我们来看这样一个式子
对于这样一个式子 =,如果我们用一般方法来算,肯定是会很复杂,那么我们来观察一下 ,它是不是可以写成 ,如果当分母上的两个数相差 时,也就是 ,我们来看 把它分成两项(两个分式)是不是可以写成 ,这就是我们的裂项法,分母上 和 两项通分后我们在来观察和 的区别。
【经典例题】
1. =?
分析:原式= =1-
一般这个知识点还有这样一个方式来考察:
=2000,这也是一个求和问题。
错位相减法
【主要考点】
一般的,通项形如 × (其中 为等差数列, 为等比数列)的数列求和问题,可以考虑采用错位相减法
【经典例题】
1.求数列 前 项的和。
解析:由题知, 的通项是等差数列 的通项与等比数列 的通项之积。
设
两式相减得:(1- ) =
=
得出:
点击加载更多评论>>