当前位置:首页 > 全部子站 > 公检法文职 > 考试资料

2020国考招警考试行测指点:如何巧解和定最值题

来源:长理培训发布时间:2020-02-28 15:44:12

  一、同向极值问题

  例1. 现有21个苹果分给5人,若每人都分到苹果且数量各不相同,则分得最多的人至多分( )个苹果

  A. 8 B. 9 C.10 D.11

  答案:D

  【解析】因为5人分21苹果所以和是一个定值,又因为求最多的那人最多分多少苹果,所以要想让他最多就是让其他人尽可能的少。那么剩下4人分别分1、2、3、4个苹果,即第一最多分21-(1+2+3+4)=11。

  二、逆向极值问题

  例2. 运动会有100名同学报名参加了4个项目中的一项或多项,已知A与B项不能同时报名。如果按照报名参加的项目对同学分组,将报名参加的项目完全一样的同学分到同一个组中,则人数最多的组最少有多少人?

  A. 8 B. 9 C.10 D.11

  答案:C

  【解析】因为100人和是一个定值,最后要求最多的组最少多少人,所以尽可能让其他组人数多,但是又不能比排第一的多,所以我们让所有组人生尽可能接近。因为可以参加一项或多项,参加一项可分4组,两项是5组,3项是2组,所以一共可分11组。用100人除以11组得到9余1,所以最多的组至少是(9+1)=10人。

  三、混合极值

  例3. 某班级共6人参加跳绳比赛,平均每人126下,且跳得最多的人比最少多条76下,如果6个人跳的次数各不相同,问跳得第三多的人最少跳了多少下?

  A.120 B. 116 C.110 D.103

  答案:D

  【解析】因为6人参加平均126下,所以总次数是126?6。求最少跳多少下,让其他5名尽可能的多。设所求量为x,则排名第四、五、六分别为(x-1)、(x-2)、(x-3),第一名(x-3+76)、第二名(x-3+75),则6人加在一起为126 ?6。

  (x-1)+ (x-2)+(x-3)+x+(x-3+76)+(x-3+75)=756

  解得x=102.83 则最少103下。

  通过以上3道题其实我们不难发现,极值问题只要判断出求的是3类中哪一类,用相应方法即可。注意在混合极值中先解决同向在处理逆向。极值问题你学会了吗?

责编:李小宇

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部