当前位置:首页 > 全部子站 > 公检法文职 > 江西

2019江西省考招警行测技巧:特值法与多者合作CP组合

来源:长理培训发布时间:2019-05-25 10:21:19

 一、特值法初识

特值法指的是在计算复杂时,用特殊值来代替未知数计算,即不设未知数而设“1”。

二、多者合作是什么

多者合作指的是多个人同时进行,共同完成某项工作。且多者合作中有两个重要的关键点,其一:工作总量=各部分工作量之和;其二:合作时,总效率=各部分效率之和。

三、如何组合

当二者结合时,我们需要思考的就是从哪些角度去设特值。第一:从时间入手设特值,当题干中已知各部分完成同一项工作时,我们可设工作总量为时间的(最小)公倍数。第二:从效率入手,当题干中涉及到效率比时,可设效率为对应的比值。

四、经典再现

例题1:甲乙两个水管单独开,注满一池水,分别需要20小时,15小时。丙水管单独开,排一池水要12小时。若水池没水,同时打开甲乙两水管,4小时后,再打开排水管丙,问水池注满还需要多少小时?

A.10

B.12

C.15

D.16

【解析】选D。由题意可知,涉及到甲乙合作,即多者合作问题。又因为注满一池水和放空一池水工作量相同,所以从时间入手设特值,设工作总量为时间的最小公倍数,即60,则甲乙的效率分别为3、4,丙的效率为5。若水池注满还需要t小时,则(3+4)×4+(3+4–5)×t=60,解得t=16小时,故选D。

例题2:某市有甲、乙、丙三个工程队,工作效率比为3:4:5。甲队单独完成A工程需要25天,丙队单独完成B工程需要9天。若三个工程队合作,完成这两项工程需要多少天?

A.6

B.7

C.8

D.10

【解析】选D。由题意可知,涉及到三队合作,即多者合作问题。又因为甲、乙、丙三个工程队效率比为3:4:5,所以从效率入手设特值,直接设甲、乙、丙效率分别为3、4、5,则A工程的工作总量为25×3=75,B工程的工作总量为9×5=45,三队合作所需时间为(75+45)÷(3+4+5)=10天,故选D。

例题3:某新建农庄有一项绿化工程交给甲、乙、丙、丁4人合作完成。已知4人的工作效率之比为3:5:4:6,甲、乙合作完成所需时间比丙、丁合作多9天,则4人合作完成工程所需时间是:

A.17天

B.18天

C.19天

D.20天

【解析】选D。由题意可知,涉及到多人合作,即多者合作问题。已知4人的工作效率之比为3:5:4:6,所以从效率入手设特值,直接设甲乙丙丁效率分别为3、5、4、6。又甲、乙合作完成所需时间比丙、丁合作多9天,设丙丁合作用时t天,则工作总量=(3+5)×(t+9)=(4+6)×t,解得t=36天,带入可得工作总量为360。所求时间为360÷(3+5+4+6)=20天,故选D。

责编:荣秀

发表评论(共0条评论)
请自觉遵守互联网相关政策法规,评论内容只代表网友观点,发表审核后显示!

国家电网校园招聘考试直播课程通关班

  • 讲师:刘萍萍 / 谢楠
  • 课时:160h
  • 价格 4580

特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关

配套通关班送国网在线题库一套

课程专业名称
讲师
课时
查看课程

国家电网招聘考试录播视频课程

  • 讲师:崔莹莹 / 刘萍萍
  • 课时:180h
  • 价格 3580

特色解密新课程高频考点,免费学习,助力一次通关

配套全套国网视频课程免费学习

课程专业名称
讲师
课时
查看课程
在线题库
面授课程更多>>
图书商城更多>>
在线报名
  • 报考专业:
    *(必填)
  • 姓名:
    *(必填)
  • 手机号码:
    *(必填)
返回顶部