- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
在行测数量关系中,有一种特殊题型是错位重排问题,在复习过程中很多人往往没有能够具体学习这个知识点,导致正确率较低。错位重排问题也叫装错信封问题,这是源自于伯努利和欧拉在相互写信过程中所发现的。错装信封问题其实是比较容易做对的,因为它的结论比较简单,所以我们应该重点掌握错位重排的应用环境以及它的结论方法。。
错位重排问题可以简单的理解为,把n个元素进行重新排列,使得每个元素都不在自己原来对应的位置上。我们通过一个例题来看一下。比如:
例1、现在有三个信封,我们分别用A、B和C表示,分别装有编号为a、b和c的信纸,现在我们把所有信纸重新装进信封,那么所有信纸都没有装进信封的情况有几种?
三封信的情况较为简单。全部装错的情况为:
A B C
(1)b c a
(2)c a b
总共两种情况。
对于类似于上个题目描述的情况,所有元素都不在对应位置上的题目,我们可以判断出此题为错位重排问题。那么我们来分析一下,错位重排问题方法数的规律。其实元素较少的情况下,我们可以通过穷举法来求出结果。比如,当只有一封信(一个信封和一个信纸)的情况下,是不会装错的,也就是说装错的方法数位0;当有2封信的情况下,装错的情况有1种。如:
A B
b a
当有3封信的时候,如例1所示,有2种结果。当有4封信的时候,有9中方法。我们用n表示有多少个元素,用Dn表示n个元素错位重排的方法数,用一个表格写出结果:
得到其他的情况,但是在考试中上述表格中的数据是常考的,需要我们记住。接下来我们通过两道题目来看一下,错位重排到底如何去应用。
责编:何幽洁
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>