- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
在下面这个加法算式中,每个字母代表0~9的一个数字,而且不同的字母代表不同的数字。
AB
EF
----
请问缺了0~9中的哪一个数字?
在下列乘法算式中,每个字母代表0~9的一个数字,而且不同的字母代表不同的数字:
×A
MAN
(提示:如果式子中每个字母都有一个解(确实是有一个解的话,那也需要首先求出A的值。)
由于每一列都是四个不同的数字相加,所以一列数字加起来得到的
如果I等于1,则右列数字之和必定是11或21,而左列数字之和相应为10或9。于是,
或者
但是,从1到9到这十个数字之和是45,而这十个数字之和与上述两个式子中九个数字之和的差都大于9。这种情况是不可能的。因此I必定等于2。
(B+D+F+H)+(A+C+E+G)+I=12+21+2=35,
(B+D+F+H)+(A+C+E+G)+I=22+20+2=45。
至少存在一种这样的加法式子,这可以证明如下:按惯例,两位数的首位数字不能是0,所以0只能出现于右列。于是右列其他三个数字之和为22。这样,右列的四个数字只有两种可能:0、5、8、9(左列数字相应为3、4、6、7),或0、6、7、9(左列数字相应为3、4、5、8)。显然,这样的加法式子有很多。
责编:曾珂
上一篇:心有他人天地宽的练习题
下一篇:周公诫子练习题
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>