2021年国家电网考试招聘数量关系题:后轮位置
来源:长理培训发布时间:2020-08-08 10:31:15
226. 有一列火车以每小时140千米的速度离开洛杉矶直奔纽约,同时,另一列火车以每小时160千米的速度从纽约开往洛杉矶。如果有一只鸟以每小时30千米的速度和两列 车同时启动,从洛杉矶出发,碰到另一列车后返回,往返在两列火车间,直到两列火车相遇为止。已知洛杉矶到纽约的铁路长4500千米,请问,这只小鸟飞行了多远路程?
解析:解析:小鸟在两列火车之间往返飞行,思维也很容易随着"跑"起来。如果我们试图算出那些越来越短的路程,问题就会十分复杂。其实大可不必,因为这只小鸟一直在两列火车间一刻不停地飞,所以,火车的相遇时间就是小鸟的飞行时间。这样,小鸟的飞行路程为:30×[4500÷(140+160)]=450(千米)。
227. 有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑的太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?解析:先算出最后各挑几块:(和差问题)哥哥是(26+2)÷2=14,弟弟是26-14=12,然后来还原:1. 哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2. 弟弟把抢走的一半还给哥哥:抢走了一半,那么剩下的就是另一半,所以哥哥就应该是9+9=18,弟弟是17-9=8;3. 哥哥把抢走的一半还给弟弟:那么弟弟原来就是8+8=16块.
228. 甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。如果他们三人共有81元,那么三人原来的钱分别是多少元?
解析:三人最后一样多,所以都是81÷3=27元,然后我们开始还原:1. 甲和乙把钱还给丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是27÷3=9,丙是81-9-9=63;2. 甲和丙把钱还给乙:甲9÷3=3,丙63÷3=21,乙81-3-21=57;3. 最后是乙和丙把钱还给甲:乙57÷3=19,丙21÷3=7,甲81-19-7=55元.
229. 有一辆自行车,前轮和后轮都是新的,并且可以互换,轮胎在前轮位置可以行驶5000千米,在后轮位置可以行驶3000千米,问使用两个新轮胎,这辆自行车最多可以行多远?
解析:如果我们考虑在中途某个时刻将车轮调换,则非常麻烦。如果将这个问题转化成工程问题:把一个车轮的使用寿命看作单位“1”,则每行1千米,前轮被使用了1/5000,后轮被使用了1/3000,这样用两个轮子的寿命2÷(1/5000+1/3000)=3750(千米),很容易就求出使用这两个轮子最多可以行3750千米,就不用考虑何时调换轮子这个恼人的问题。
230. 星期六,某同学离家外出时看了看钟,2个多小时后回到家又看了看钟,发现时针和分针恰好互换位置。请计算,该同学离家外出多少小时?
解析:这看上去是个时间问题,但如果我们仅仅局限于钟面上的时间问题去思考,很难找到解题思路。可以将这个问题转化成行程问题,这样想:在这两个多小时中,分钟转两圈多(红线表示),时针走了两个多大格(绿线表示),两针交换了位置,如下图,两针这段时间里正好走了三圈,相当于这段时间内时针和分针合走了三圈,这样就将钟面的时间问题转化成了行程中的相遇问题。
用总路程3(3圈)除以速度和(1+1/12)【想:分针1小时走1圈,时间1小时走1大格,即1/12】,列式为3÷(1+1/12)=2又13分之10(小时)。
点击加载更多评论>>