- 讲师:刘萍萍 / 谢楠
- 课时:160h
- 价格 4580 元
特色双名师解密新课程高频考点,送国家电网教材讲义,助力一次通关
配套通关班送国网在线题库一套
一、考情分析
年龄问题在历年的国考和省考中出现的频次不大,题目整体难度也不大,属于得分题目,只要考生掌握了基本的计算公式,在计算过程中细致认真,基本能掌握这一考点。
二、技巧方法
年龄问题中时间发生变化,年龄在增长,但是年龄差始终不变(解题的关键)。年龄问题往往是“和差”、“差倍”等问题的综合应用。
解决年龄问题主要的解题方法有直接分析法、方程法、和差倍关系法、表格法、数轴法。
三、例题精讲
例题1:父亲今年44岁,儿子今年16岁,当父亲的年龄是儿子的年龄的8倍时,父子的年龄和是多少?
A.36 B.54 C.99 D.162
解析:父子的年龄差是一个不变量,二者的年龄差为44-16=28岁。因此,当父亲的年龄是儿子的8倍时,年龄差是儿子年龄的7倍,儿子的年龄为28÷7=4岁,此时父子的年龄和为4×(8+1)=36岁。
例题2:在一个家庭中有爸爸、妈妈、女儿和儿子。现在把所有成员的年龄加在一起是77岁,爸爸比妈妈大3岁,女儿比儿子大2岁。5年前,全家所有人的年龄总和是58岁。现在爸爸的年龄是多少岁?
A.67 B.32 C.35 D.78
解析:根据5年前全家所有人的年龄和是58岁,可以推出现在全家人的年龄总和应该是58+4×5=78岁。但实际上的年龄总和却是77岁,差了1岁,说明有一个人只长了4岁,这个人只能是儿子(5年前尚未出生)。女儿就应该是4+2=6岁,现在父母的年龄和是77-4-6=67岁,又知他们的年龄差是3岁,可求出爸爸的年龄是(67+3)÷2=35岁。
例题3:1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?
A.34岁,12岁 B.32岁,8岁 C.36岁,12岁 D.34岁,10岁
解析:设1998年乙的年龄是x岁,那么甲的年龄是4x岁。从1998年到2002年经过了4年,两个人都长了4岁,那么这个时候,甲的年龄是4x+4岁,乙的年龄是x+4岁。由于甲的年龄是乙的 3倍,所以,4x+4=3(x+4),x=8。也就是说1998年,乙的年龄是8岁,则2000年的年龄是10岁,直接选择D。
例题4:2004年小强小学毕业时正好12岁,妈妈40岁,多少年前妈妈的年龄正好是小强的5倍?
A.4 B.5 C.8 D.7
解析:妈妈和小强的年龄差为40-12=28岁;
当妈妈的年龄是小强的5倍时,妈妈与小强的年龄差就相当于小强年龄的4倍,此时小强的年龄为28÷(5-1)=7岁。12-7=5,故5年前妈妈的年龄正好是小强的5倍。
例题5:甲、乙两人年龄不等,已知当甲像乙现在这么大时,乙8岁;当乙像甲现在这么大时,甲29岁。问今年甲的年龄为多少岁?
A.22 B.34 C.36 D.43
解析:画数轴可知甲比乙大,设二者年龄差为x,如图所示甲应小于29岁,直接选A。
责编:张立娟
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
课程专业名称 |
讲师 |
课时 |
查看课程 |
---|
点击加载更多评论>>